Новости

Академик Александр Олегович Глико: важность наук о Земле сегодня нельзя переоценить

09.01.2024

Александр Олегович Глико — геофизик, специалист в области теоретической геофизики и геотермии, доктор физико-математических наук, академик, член Президиума РАН. Руководитель научного направления «Планетарная геофизика и геодинамика» Института физики Земли им. О.Ю. Шмидта РАН. Главный научный сотрудник Лаборатории теоретической геофизики. Профессор физического факультета МГУ. По результатам исследований А.О. Глико опубликовано более 120 работ, широко известных мировой научной общественности. Член Международной Геотермальной Ассоциации, с 2007 года является представителем РФ в IASPEI. Член редколлегий журналов «Физика Земли», «Episodes» и «Геотектоника». Награжден Медалью ордена «За заслуги перед Отечеством» II степени.


Александр Олегович Глико. Фото Ольги Мерзляковой / Научная Россия

Александр Олегович в беседе с обозревателем портала «Научная Россия» Наталией Лесковой рассказал о своей научной деятельности, о том, какие вызовы стоят сейчас перед науками о Земле и об исследованиях в области геофизики и геологии.

― Александр Олегович, Вы много лет руководили Институтом физики Земли, почти 15 лет были академиком-секретарем отделения наук о Земле РАН. Наверное, в науках о Земле вы знаете практически все?

― Конечно же, нет. Любое знание ограничено, а наше незнание бесконечно велико. Но в каких-то пределах я компетентен.

― Какие направления в науках о Земле сейчас наиболее важны в плане как фундаментальных, так и прикладных исследований?

― Науку часто делят на прикладную и фундаментальную. Это можно принять как некоторую условность, но не в виде жесткой дихотомии: многие открытия в науке, ставшие важными в целом, начинались с решения практических задач, а многие фундаментальные исследования через некоторое время приводили к новым достижениям в технологической сфере и выходу в практику.

В науках о Земле практическая часть всегда была связана с геологическими исследованиями, поиском месторождений твердых полезных ископаемых, нефтяных и газовых залежей и в целом с развитием минерально-сырьевой базы. Поэтому ближе других дисциплин к непосредственному практическому использованию своих достижений находятся горные науки (новые эффективные методы разработки месторождений, а также обогащения минерального сырья), нефтяная геология и геофизика.

― Одно время стало модным называть наше национальное богатство (нефть, газ и соответствующие добывающие отрасли) «нефтяным проклятием», мешающим развитию высокотехнологичных производств. Вы с этим согласны?

― Категорически нет. Какое же это проклятие, если страна этим жила и живет до сих пор?! Беда заключалась в возобладавшей примитивной мысли: «Все, чего у нас нет, мы можем купить (за счет доходов от продажи углеводородов на Запад), и это обойдется нам дешевле, чем развивать собственную промышленность». Сейчас вместе с осознанием реальности прилагаются большие усилия для стимулирования технологического развития, и эти усилия должны принести свои плоды.

Фундаментальная часть наук о твердой оболочке Земли определяется необходимостью получения знаний о структуре и вещественном составе земных недр, о геодинамических процессах, определяющих тектоническое развитие нашей планеты, о физических полях Земли, о сейсмических процессах и вулканических явлениях.

Для другой части наук о Земле, связанной с изучением океана, атмосферы, водных ресурсов, также характерно тесное взаимодействие фундаментальных и прикладных направлений. Самый замечательный пример ― исследования климатических изменений, осуществляемые на основе анализа огромного количества разнообразных данных, построения и использования сложнейших физико-математических моделей. Практическая сторона этой проблемы, связанная в частности с глобальным потеплением, очевидна и представлена в многочисленных дискуссиях и обсуждениях в средствах массовой информации. Среди членов отделения наук о Земле есть ряд выдающихся ученых ― специалистов в области климатологии, океанологии и физики атмосферы, которые могут предметно рассказать об этой проблеме.

 Как давно люди начали интересоваться вопросами строения Земли, ее недрами?

― Трудно ответить конкретно. Неоспоримо вечное стремление человека проникнуть в сущность вещей. Тут уместно вспомнить Тита Лукреция Кара и его замечательную поэму «О природе вещей». Можно привести и более ранний пример Эратосфена, библиотекаря из Александрии, сумевшего в III в. до н.э. определить размер окружности Земли. Попытки понять причины тех или иных наблюдаемых явлений, осознать связь различных фактов были всегда свойственны человеческому разуму. Но величайшие открытия совершались истинными гениями, такими как Исаак Ньютон, Д.И. Менделеев, И.П. Павлов.

― Но ведь и в науках о Земле тоже были великие люди?

― Это так. У нас в вестибюле Института физики Земли вы можете увидеть бюст князя Бориса Борисовича Голицына ― одного из основателей современной сейсмологии. Это удивительная фигура! Окончил Морскую академию и Страсбургский университет, внес огромный вклад в теорию теплового излучения (им было впервые введено представление о температуре излучения абсолютно черного тела), теорию критического состояния вещества, а также оптику. При этом он был директором Главной физической обсерватории, заведующим Экспедицией заготовления государственных бумаг, а в годы Первой мировой войны до своей кончины в 1916 г. ― начальником Главного военно-метеорологического управления.

Но его важнейшие достижения относятся к сейсмологии. Именно Б.Б. Голицын создал первый современный сейсмограф. Нам сейчас не кажется удивительным тот факт, что сейсмические (упругие) волны, генерируемые землетрясениями, могут регистрироваться на расстояниях в десятки тысяч километров. К началу ХХ в. были изобретены первые весьма несовершенные механические сейсмографы. Они характеризовались огромной массой (от нескольких сот килограммов до нескольких тонн) и очень низким коэффициентом усиления. При механическом способе регистрации для записи вертикальной составляющей сейсмических колебаний с характерными периодами порядка нескольких секунд требовались маятники именно с такими величинами массы.

Б.Б. Голицыным был предложен, теоретически обоснован и разработан принципиально новый электромагнитный метод регистрации сейсмических колебаний, позволивший достичь увеличения в несколько сот тысяч раз. Но самое главное его достижение связано с введением в систему электромагнитного затухания, что решило проблему веса: сейсмографы Б.Б. Голицына, которыми в течение короткого срока были оборудованы сейсмологические сети многих стран, весили всего несколько килограммов.

Среди других достижений Б.Б. Голицына ― способ определения координат эпицентра землетрясения по данным одной сейсмической станции, метод вычисления энергии землетрясения по записям сейсмических волн и ряд других существенных результатов.

― Сейсмология ― в большей степени фундаментальная или прикладная наука?

― Сейсмология относится, с одной стороны, к фундаментальной науке, потому что дает ответ на вопрос о происхождении и природе землетрясений на основе синтеза наблюдений и теории распространения волн. Б.Б. Голицыну принадлежит крылатая фраза: «Можно уподобить всякое землетрясение фонарю, который <...> освещает недра Земли...». Наблюдая сейсмические волны, можно определить строение Земли и ряд физических параметров ее вещества.

Практическая же сторона сейсмологии связана с тем, что она обеспечивает информацию об основных характеристиках сейсмического процесса, позволяет определить сейсмически опасные районы, провести градацию этих районов по степени опасности и оценить закономерности повторения сейсмических событий. Это так называемое сейсмическое районирование. Я уже не говорю о прогнозировании землетрясений. Это особая и сложная проблема.

― Научимся ли мы когда-нибудь делать краткосрочные прогнозы землетрясений?

― Вопрос очень глубокий. Для Института физики Земли это всегда было одним из основных направлений научных исследований. Сама тема возникла достаточно давно. Необходимость целенаправленного исследования процессов подготовки сильных землетрясений встала на повестку дня после разрушительного Ашхабадского землетрясения 1948 г. В этом же году О.Ю. Шмидт передал руководство институтом академику Г.А. Гамбурцеву, выдающемуся геофизику, разработавшему ряд новых методов геофизической разведки, успешно применяемых и до настоящего времени, а также метод ГСЗ (глубинного зондирования Земли).

Г.А. Гамбурцев понимал, что успех вряд ли могут принести разрозненные исследования, не объединенные некоторой общей концепцией. Он выдвинул замечательную цельную программу изучения сейсмических процессов, основанную не только на непосредственных сейсмических наблюдениях и их обработке, но и на постановке широких сейсмотектонических работ, привлечении средств изучения медленных движений земной коры, которые могут иметь связь с сейсмическими событиями, учете реологических свойств пород в зоне сейсмических разломов и т.д.

Информация взята с портала «Научная Россия». Автор Наталия Лескова.

Дополнительные материалы:

Полная версия интервью на портале «Научная Россия»