Вопросы инженерной сейсмологии: статья

О некоторых параметрах пространственного вероятностного анализа сейсмической опасности для сейсмостойкого строительства и управления рисками
В.Ю. Соколов
Центр по изучению геологических опасностей, Геологическая служба Саудовской Аравии
Журнал: Вопросы инженерной сейсмологии
Том: 49
Номер: 4
Год: 2022
Страницы: 187-205
УДК: 550.34
DOI: 10.21455/VIS2022.4-13
Ключевые слова: пространственные оценки сейсмической опасности, сильные движения грунта, расчетные сейсмические воздействия
Аннотация: В работе обсуждаются два параметра пространственного вероятностного анализа сейсмической опасности (П-ВАСО), которые могут быть использованы в практике сейсмостойкого проектирования и управления сейсмическими рисками для городских или промышленных территорий. Один из этих параметров оценивается на основе среднегодовой частоты превышения уровня колебаний грунта по крайней мере в одной точке из нескольких точек, расположенных в пределах заданной территории. Второй параметр определяет вероятность того, что некоторый уровень колебаний грунта (например, расчетное сейсмическое воздействие) будет превышен хотя бы один раз по крайней мере в пределах некоторой части заданной территории в течение рассматриваемого периода времени. Обсуждаются особенности расчета этих параметров и показаны результаты применения метода П-ВАСО на примере Тайваньского региона.
Список литературы: Афанасьева В.В. Онтология научной неопределенности. Саратов: Наука, 2008. 109 с.

Дорожкин А.М, Пакина Т.А. Феномен научной неопределенности: анализ проблемы // Вестн. Нижегородского ун-та. Сер. Социальные науки. 2011. Т. 24, № 4. С. 102–108.

Завьялов А.Д., Перетокин С.А., Данилова Т.И., Медведева Н.С., Акатова К.Н. Общее сейсмическое районирование: от карт ОСР-97 к картам ОСР-2016 и картам нового поколения в параметрах физических характеристик // Вопросы инженерной сейсмологии. 2018. Т. 55, № 4. С. 47–68. https://doi.org/10.21455/VIS2018.4-4

Перетокин С.А. Некоторые аспекты вероятностной оценки сейсмической опасности с использованием эмпирических зависимостей // Инженерные изыскания. 2016. № 7. С. 39–48.

СП 14.13330.2018 Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81*. М.: Стандартинформ, 2018. 122 с.

Соколов В.Ю. О моделировании пространственного распределения сильных движений грунта при оценках сейсмической опасности и риска // Вопросы инженерной сейсмологии. 2012. Т. 39, № 2. С. 5–22.

Соколов В.Ю., Венцель Ф. Корреляция сильных движений грунта и ее влияние на оценки сейсмической опасности для протяженных объектов // Вопросы инженерной сейсмологии. 2011. Т. 38, № 4. С. 5–14.

Соколов В.Ю., Венцель Ф. Моделирование сильных движений грунта при оценках сейсмических потерь для городских территорий в регионах с недостаточным количеством записей сильных движений: выбор моделей корреляции // Вопросы инженерной сейсмологии. 2013. Т. 40, № 3. С. 5–22.

Соколов В.Ю., Венцель Ф. Сопоставление стандартных (точечных) и пространственных вероятностных оценок сейсмической опасности // Вопросы инженерной сейсмологии. 2014. Т. 41, № 3. С. 5–22.

Сучкова С.М. Феномен научной неопределенности (эпистемологический и парадигмальный аспекты): Дисс. ... к.филос.н. Саратов, 2006. 158 с.

Abrahamson N.A. State of the practice of seismic hazard evaluation // Proc. Int. Conf. on Geotechnical and Geological Engineering GeoEng2000, Melbourne, November 19–24, 2000. V. 1. Melbourne, 2000. P. 659–685.

Abrahamson N.A., Bommer J.J. Probability and uncertainty in seismic hazard analysis // Earthq. Spectra. 2005. V. 21, Iss. 2. P. 603–607. https://doi.org/10.1193/1.1899158

ASCE/SEI 7-22. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: Amer. Soc. Civil Eng., 2021. 1036 p. ISBN: 9780784415788

Aspinall W.P. Scientific uncertainties: a perspective from probabilistic seismic hazard assessments for low-seismicity areas // Risk and Uncertainty Assessment for Natural Hazards / Rougier J., Sparks S., Hill L., eds. Cambridge: University Press, 2013. P. 234–274.

Assatourians K., Atkinson G.M. EqHaz: an open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach // Seismol. Res. Lett. 2013. V. 84, N 3. P. 516–524. https://doi.org/10.1785/0220120102

Atkinson G.M. An overview of developments in seismic hazard analysis // Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1–6, 2004. Vancouver: 13 WCEE Secretariat, 2004. Paper N 5001.

Bommer J.J. Challenges of building logic trees for probabilistic seismic hazard analysis // Earthq. Spectra. 2012. V. 28, Iss. 4. P. 1723–1735. https://doi.org/10.1193/1.4000079

Bommer J.J. Earthquake hazard and risk analysis for natural and induced seismicity: towards objective assessments in the face of uncertainty // Bull. Earthq. Eng. 2022. V. 20, Iss. 6. P. 2825–3069. https://doi.org/10.1007/s10518-022-01357-4

Bommer J.J., Pinho R. Adapting earthquake actions in Eurocode 8 for performance-based seismic design // Earthq. Eng. Struct. Dyn. 2006. V. 35, Iss. 1. P. 39–55. https://doi.org/10.1002/eqe.530

Bommer J.J., Scherbaum F. The use and misuse of logic tree in probabilistic seismic hazard analysis // Earthq. Spectra. 2008. V. 24, Iss. 4. P. 997–1009. https://doi.org/10.1193/1.2977755

Chatterjee S., Hadi A.S. Regression Analysis by Example. 4th edn. New York: Wiley, 2006. 385 p.

Cito P., Iervolino I. Peak-over-threshold: Quantifying ground motion beyond design // Earthq. Eng. Struct. Dyn. 2020. V. 49, Iss. 5. P. 458–478. https://doi.org/10.1002/eqe.3248

Cornell C.A. Engineering seismic risk analysis // Bull. Seismol. Soc. Amer. 1968. V. 58, N 5. P. 1583–1606. https://doi.org/10.1785/BSSA0580051583

Criteria for earthquake resistant design of structures. Part 1: General provisions and buildings. IS-1893. New Delhi: Bureau of Indian Standards, 2016. 44 p.

Crowley H., Bommer J.J. Modelling seismic hazard in earthquake loss models with spatially distributed exposure // Bull. Earthq. Eng. 2006. V. 4, Iss. 3. P. 249–273. https://doi.org/10.1007/s10518-006-9009-y

Doğangün A. Livaoğlu R. A comparative study of the design spectra defined by Eurocode 8, UBC, IBC and Turkish Earthquake Code on R/C sample buildings // J. Seismol. 2006. V. 10, Iss. 3. P. 335–351. https://doi.org/10.1007/s10950-006-9020-4

Duvernay B., Kölz E., Jamali N., Michel C. Is the residual risk related to the Swiss seismic code provisions acceptable? // Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, June 18–21, 2018. Paper N 10863.

Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. EN1998-1:2004. Brussels: CEN, 2004. 229 p.

Frankel A. Comment on “Why earthquake hazard maps often fail and what to do about it” by S. Stein, R. Geller, and M. Liu // Tectonophysics. 2013. V. 592. P. 200–206. https://doi.org/10.1016/j.tecto.2012.11.032

García-Mayordomo J., Faccioli E., Paolucci R. Comparative study of the seismic hazard assessments in European national seismic codes // Bull. Earthq. Eng. 2004. V. 2, Iss. 1. P. 51–73. https://doi.org/10.1023/B:BEEE.0000039046.42398.9d

Ghosh S.K. Significant changes from ASCE 7-05 to ASCE 7-10, part 1: Seismic design provisions // PCI Journal. 2014. V. 59, Iss. 1. P. 60–82. https://doi.org/10.15554/pcij.01012014.60.82

Gülkan P. A dispassionate view on seismic-hazard assessment // Seismol. Res. Lett. 2013. V. 84, N 3. P. 413–416. https://doi.org/10.1785/0220130005

Iervolino I. Probabilities and fallacies: Why hazard maps cannot be validated by individual earthquakes // Earthq. Spectra. 2013. V. 29, Iss. 3. P. 1125–1136. https://doi.org/10.1193/1.4000152

Iervolino I., Giorgio M., Cito P. The peak over the design threshold in strong earthquakes // Bull. Earthq. Eng. 2019a. V. 17, Iss. 3. P. 1145–1161. https://doi.org/10.1007/s10518-018-0503-9

Iervolino I., Giorgio M., Cito P. Which earthquakes are expected to exceed the design spectra? // Earthq. Spectra. 2019b. V. 35, Iss. 3. P. 1465–1483. https://doi.org/10.1193/032318EQS066O

Kijko A. Seismic Hazard // Encyclopedia of Solid Earth Geophysics. V. 1 / Gupta H.K., ed. Heidelberg: Springer, 2011. P. 1107–1120.

Klügel J.-U. Comment on “Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates?” by Julian J. Bommer and Norman A. Abrahamson // Bull. Seismol. Soc. Amer. 2007. V. 97, N 6. P. 2198–2207. https://doi.org/10.1785/0120070018

Klügel J.-U. Seismic hazard analysis – quo vadis? // Earth Sci. Rev. 2008. V. 88, Iss. 1–2. P. 1–32. https://doi.org/10.1016/j.earscirev.2008.01.003

Krinitzsky E.L. How to obtain earthquake ground motions for engineering design // Engineering Geology 2002. V. 65, Iss. 1. P. 1–16. https://doi.org/10.1016/S0013-7952(01)00098-9

Kulkarni R.B., Youngs R.R., Coppersmith K.J. Assessment of confidence intervals for results of seismic hazard analysis // Proceedings of 8th World Conference on Earthquake Engineering, San Francisco, USA, July 21–28, 1984. V. 1. Prentice Hall, 1984. P. 263–270.

Luco N., Ellingwood B.R., Hamburger R.O., Hooper J.D., Kimball J.K., Kircher C.A. Risk-targeted versus current seismic design maps for the conterminous United States // SEAOC 2007 convention proceedings. 2007. URL: https://secure.skghoshassociates.com/publication/risk-targeted-ground-motion-paper.pdf

Malhotra P.K. Seismic design loads from site-specific and aggregate hazard analyses // Bull. Seismol. Soc. Amer. 2008. V. 98, N 4. P. 1849–1862. https://doi.org/10.1785/0120070241

Marzocchi W., Taroni M., Selva J. Accounting for epistemic uncertainty in PSHA: Logic tree and ensemble modeling // Bull. Seismol. Soc. Amer. 2015. V. 105, N 4. P. 2151–2159. https://doi.org/10.1785/0120140131

McGuire R.K. Seismic Hazard and Risk Analysis. Oakland, CA: Earthquake Engineering Research Institute, 2004. 240 p.

Mulargia F., Stark Ph.B., Geller R.J. Why is probabilistic seismic hazard analysis (PSHA) still used? // Phys. Earth Planet. Inter. 2017. V. 264. P. 63–75. https://doi.org/10.1016/j.pepi.2016.12.002

Musson R.M.W. PSHA validated by quasi observational means // Seismol. Res. Lett. 2012. V. 83, N 1. P. 130–134. https://doi.org/10.1785/gssrl.83.1.130

National Standard of the People’s Republic of China. Code for seismic design of buildings. GB 50011-2010. Beijing, 2010. 237 p.

NEHRP (National Earthquake Hazards Reduction Program) recommended provisions for seismic regulations of new buildings and other structures. FEMA 450. 2003 Edition. Washington, D.C.: Building Seismic Safety Council, National Institute of Building Sciences, 2004. 356 p.

NEHRP (National Earthquake Hazards Reduction Program) recommended provisions for seismic regulations of new buildings and other structures. FEMA P-750. 2009 Edition. Washington, D.C.: Building Seismic Safety Council, National Institute of Building Sciences, 2009. 406 p.

NEHRP (National Earthquake Hazards Reduction Program) recommended seismic provisions: design examples. FEMA P-751. Washington, D.C.: Building Seismic Safety Council, National Institute of Building Sciences, 2012. 916 p.

Park J., Bazzurro P., Baker J.W. Modeling spatial correlation of ground motion intensity meas ures for regional seismic hazard and portfolio loss estimations // Applications of Statistics and Probability in Civil Engineering / J. Kanda, T. Takada, H. Furuta, eds. London: Taylor and Francis Group, 2007. P. 1–8.

Phung V.-B., Loh C.-H., Chao S.-H., Abrahamson N.A. Analysis of epistemic uncertainty associated with GMPEs and their weight within the logic tree for PSHA: Application to Taiwan // Terr. Atmos. Ocean. Sci. 2018. V. 29, N 6. P. 611–633. https://doi.org/10.3319/TAO.2018.08.13.01

Rugarli P. The view of a structural engineer about reliable seismic hazard assessment // Earthquakes and Sustainable Infrastructure / G.F. Panza, V.G. Kossobokov, E. Laor, B. De Vivo, eds. Elsevier, 2022. P. 59–76.

SBC 301-CR-18. Saudi Building Code for loading and forces. Riyadh: The Saudi Building Code National Committee (SBCNCE), 2018. 335 p.

Scherbaum F, Kuehn N.M. Logic tree branch weights probabilities: Summing up to one is not enough // Earthq. Spectra. 2011. V. 27, Iss. 4. P. 1237–1251. https://doi.org/10.1193/1.3652744

Seismic Design Code for buildings in Taiwan. Taipei: Construction and Planning Agency, Ministry of the Interior, 2005. 51 p.

SI 413. Design provisions for earthquake resistance of structures. Amendment No. 5. Tel Aviv: The Standards Institution of Israel, 2013. 29 p.

Sokolov V., Ismail-Zadeh A. Seismic hazard from instrumentally recorded, historical and simulated earthquakes: Application to the Tibet-Himalayan region // Tectonophysics. 2015. V. 657. P. 187–204. https://doi.org/10.1016/j.tecto.2015.07.004

Sokolov V., Ismail-Zadeh A. On the use of multiple-site estimations in probabilistic seismic hazard assessment // Bull. Seismol. Soc. Amer. 2016. V. 106, N 5. P. 2233–2243. https://doi.org/10.1785/0120150306

Sokolov V., Wenzel F. Spatial correlation of ground-motions in estimating seismic hazard to civil infrastructure // Seismic Risk Analysis and Management of Civil Infrastructure Systems / S. Tesfamariam, K. Goda, eds. Cambridge: Woodhead Publishing Ltd., 2013a. P. 57–78.

Sokolov V., Wenzel F. Further analysis of the influence of site conditions and earthquake magnitude on ground-motion within-earthquake correlation: analysis of PGA and PGV data from the K-NET and the KiK-net (Japan) networks // Bull. Earthq. Eng. 2013b. V. 11, Iss. 6. P. 1909–1926. https://doi.org/10.1007/s10518-013-9493-9

Sokolov V., Wenzel F. On the relation between point-wise and multiple-location probabilistic seismic hazard assessments // Bull. Earthq. Eng. 2015. V. 13, Iss. 5. P. 1281–1301. https://doi.org/10.1007/s10518-014-9661-6

Sokolov V., Wenzel F. Areal exceedance of ground motion as a characteristic of multiple-site seismic hazard: Sensitivity analysis // Soil Dyn. Earthq. Eng. 2019. V. 126. Art. 105770. https://doi.org/10.1016/j.soildyn.2019.105770

Sokolov V., Wenzel F., Jean W.-Y., Wen K.-L. Uncertainty and spatial correlation of earthquake ground motion in Taiwan // Terr. Atmos. Ocean. Sci. 2010. V. 21, N 6. P. 905–921. https://doi.org/10.3319/TAO.2010.05.03.01(T)

Sokolov V., Wenzel F., Wen K.-L., Jean W.-Y. On the influence of site conditions and earthquake magnitude on ground-motion within-earthquake correlation: Analysis of PGA data from TSMIP (Taiwan) network // Bull. Earthq. Eng. 2012. V. 10, Iss. 5. P. 1401–1429. https://doi.org/10.1007/s10518-012-9368-5

Sokolov V., Zahran H.M., Youssef S.E.-H., El-Hadidy M., Alraddadi W.W. Seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty // Bull. Earthq. Eng. 2017. V. 15, Iss. 7. P. 2695–2735. https://doi.org/10.1007/s10518-016-0075-5

Takagi J., Wada A. Recent earthquake and the need for a new philosophy for earthquake resistant design // Soil Dyn. Earthq. Eng. 2019. V. 119. P. 499–507. https://doi.org/10.1016/j.soildyn.2017.11.024

TWSSHAC project. 2017. URL: http://sshac.ncree.org.tw/ws3.htm

Vakov A.V. Relationships between earthquake magnitude, source geometry and slip mechanism // Tectonophysics. 1996. V. 261, Iss. 1–3. P. 97–113. https://doi.org/10.1016/0040-1951(96)82672-2

Wang M., Takada T. Macrospatial correlation model of seismic ground motions // Earthq. Spectra. 2005. Vol. 21, Iss. 4. P. 1137–1156. https://doi.org/10.1193/1.2083887

Wenzel F., Sokolov V. Areal exceedance of ground motion as complementary hazard quantification // Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, June 18–21, 2018.

Wesson R.L., Perkins D.M. Spatial correlation of probabilistic earthquake ground motion and loss // Bull. Seismol. Soc. Amer. 2001. V. 91, N 6. P. 1498–1515. https://doi.org/10.1785/0120000284

Wyss M., Rosset Ph. Mapping seismic risk: The current crisis // Nat. Hazards. 2013. V. 68, Iss. 1. P. 49–52. https://doi.org/10.1007/s11069-012-0256-8

Yaghmaei-Sabegh S., Mohammadi A. Evaluating the use of multisite probabilistic seismic hazard analysis: A case of Sarpol-e Zahab city, Iran // Pure Appl. Geophys. 2022. V. 179, Iss. 10. P. 3605–3623. https://doi.org/10.1007/s00024-022-03142-5