Сейсмические приборы: статья

Распределенное акустическое зондирование: новый инструмент или новая парадигма
К.В. Кислов1
В.В. Гравиров2
1 Институт теории прогноза землетрясений и математической геофизики РАН, г. Москва, Россия
2 Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, Россия
Журнал: Сейсмические приборы
Том: 58
Номер: 2
Год: 2022
Страницы: 5-38
УДК: 550.34.038.4+550.34.044.54
DOI: 10.21455/si2022.2-1
Ключевые слова: распределенное акустическое зондирование (DAS), распределенное измерение вибрации (DVS), распределенное измерение деформации (DSS), оптическое волокно, рассеяние Рэлея, рассеяние Мандельштама–Бриллюэна, вынужденное рассеяние Мандельштама–Бриллюэна, оптическая рефлектометрия, системы анализа рассеяния Бриллюэна
Аннотация: Распределенное акустическое зондирование (DAS) – это технология использования оптоволоконного кабеля в качестве линейного массива виртуальных сейсмических датчиков. Статья позволяет немного больше узнать о данных DAS, особенно с теоретической точки зрения, и исправить некоторые заблуждения, которые все еще существуют. В ней дается обзор развития DAS, представлены его модификации. Цель работы – обсудить достоинства и перспективы распределенных оптоволоконных датчиков для расширения границ их практических применений и прояснить проблемы и ограничения, с которыми сталкиваются сейсмологи, использующие DAS. Описаны способы преодоления существующих ограничений. Указываются области, которые необходимо развивать для более широкого распространения распределенных измерений, и перечислены некоторые коммерциа-лизированные применения и приложения, в которых эксперименты скоро перейдут уже в рутинные геофизические измерения.
Список литературы: Буймистрюк Г.Я. Информационно-измерительная техника и технология на основе волоконно-оптических датчиков и систем. СПб.: ИВА, ГРОЦ Минатома, 2005. 191 с.

Волоконно-оптическая техника: история, достижения, перспективы / Под ред. С.А. Дмитриева, Н.Н. Слепова. М.: Connect, 2000. 376 с.

Волоконно-оптические датчики распределения деформации и температуры (DSTS). [Электрон-ный ресурс]. URL: https://www.ozoptics.com/ALLNEW_PDF/DTS0115RU.pdf (дата обраще-ния: 10.01.2022).

Дашков М.В., Смирнов А.С. Поляризационная рефлектометрия оптических волокон: физические основы, методы и приложения (обзорная статья) // Прикладная фотоника. 2018. Т. 5, № 1–2. С.62–91.

Ильинский Д.А., Алексеев А.Э., Ганжа О.Ю., Симикин Д.Е., Оджа М. Использование волокон-но-оптических линий связи с фазочувствительным рефлектометром для регистрации сейс-мических колебаний // Сейсмические приборы. 2020. Т. 56, № 4. С.5–28. 10.21455/si2020.4-1

Кислов К.В., Гравиров В.В. Вращательная сейсмология. Обзор достижений и перспектив // Сейсмические приборы. 2020. Т. 56, № 3. С.5–25. https://doi.org/10.21455/si2020.3-1

Распределенные волоконно-оптические датчики. “Специальные системы. Фотоника”. [Элек-тронный ресурс]. URL: https://sphotonics.ru/catalog/fiber-sensing/ (дата обращения: 10.01.2022).

Распределенные волоконные датчики. “Специальные системы. Фотоника”. [Электронный ре-сурс]. URL: https://sphotonics.ru/solutions/raspredelennye-volokonnye-datchiki/ (дата обраще-ния: 21.12.2021).

Ткаченко А.Ю., Лобач И.А., Каблуков С.И. Оптический частотный рефлектометр на основе са-москанирующего волоконного лазера // Фотон-Экспресс. 2019. № 6. (Спецвыпуск “Фотон-Экспресс-Наука 2019”). С.44–45. http://www.fibopt.ru/rfo2019/FE6_2019.pdf

Шувалов А.А., Пнев А.Б., Игнатьев В.И., Жирнов А.А., Ошкин А.Н., Нестеров Е.Т., Степа-нов К.В., Тарасов А.В., Коньков А.И., Чернуцкий А.О. Возможность использования распре-деленного акустического зондирования для решения геофизических задач // 14-я ежегодная научно-практическая конференция и выставка “Инженерная и рудная геофизика 2018”. 23–27 апреля 2018. Алматы, Казахстан. Алматы: EAGE, 2018. 46558. https://doi.org/10.3997/2214-4609.201800591

Яцеев В.А., Зотов А.М., Бутов О.В. Использование чирпированного импульса для восстановле-ния фазы в когерентном рефлектометре // Фотон-Экспресс. 2019. № 6. (Спецвыпуск “Фо-тон-Экспресс-Наука 2019”). С.46–47. http://www.fibopt.ru/rfo2019/FE6_2019.pdf

Abbott R.E., Mellors R., Pitarka A. Distributed acoustic sensing observations and modeling of the DAG series of chemical explosions // CTBT: Science and Technology. Vienna, Austria. 2019. T2.3–P12.

Ajo Franklin J.B., Dou S., Lindsey N.J., Monga I., Tracy C., Robertson M., Tribaldos V.R., Ulrich C., Freifeld B., Daley T., Li X. Distributed acoustic sensing using dark fiber for near-surface characte-rization and broadband seismic event detection // Sci. Rep. 2019. N 9. Art. 1328. https://doi.org/10.1038/s41598-018-36675-8

Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. A phase-sensitive coherence reflectometer with amplitude-phase modulation of probing pulses // Tech. Phys. Lett. 2015. V. 41. P.72–75. https://doi.org/10.1134/S1063785015010174

Alekseev A., Gorshkov B., Potapov V. Fidelity of the dual-pulse phase-OTDR response to spatially dis-tributed external perturbation // Laser Phys. 2019. V. 29, N 5. Art. 055106. https://doi.org/10.1088/1555-6611/ab0d15

Alekseev A.E., Gorshkov B.G., Potapov V.T., Taranov M.A., Simikin D.E. Dual-pulse phase-OTDR re-sponse to propagating longitudinal disturbance // Laser Phys. 2020. V. 30. Art. 035107. http://dx.doi.org/10.1088/1555-6611/ab70b0

Alfataierge E., Aldawood A., Bakulin A., Stewart R., Merry H. Influence of gauge length on DAS VSP data at the Houston Research Center Test Well // 90th Annual International Meeting, SEG. 2020. Expanded Abstracts. P.505–509. https://doi.org/10.1190/segam2020-3419066

Aung T.L., Ma N., Kishida K., Guzik A. Advanced structural health monitoring method by integrated isogeometric analysis and distributed fiber optic sensing // Sensors. 2021. V. 21, Iss. 17. Art. 5794. https://doi.org/10.3390/s21175794

Awwad E., Dorize C., Guerrier S. Renaudier J. Detection-localization-identification of vibrations over long distance SSMF with coherent Δ-OTDR // J. Lightwave Tech. 2020. V. 38, N 12. P.3089–3095. https://doi.org/10.1109/JLT.2020.2993167

Bado M.F., Casas J.R. A review of recent distributed optical fiber sensors applications for civil engi-neering structural health monitoring // Sensors. 2021. V. 21, Iss. 5. Art. 1818. https://doi.org/10.3390/s21051818

Baird A.F., Stork A.L., Horne S.A., Naldrett G., Kendall J.-M., Wookey J., Verdon J.P., Clarke A. Characteristics of microseismic data recorded by distributed acoustic sensing systems in anisotropic media // Geophysics. 2020. V. 85. P.KS139–KS147. http://dx.doi.org/10.1190/geo2019-0776.1

Bakulin A., Golikov P., Smith R., Erickson K., Silvestrov I., Al-Ali M. Smart DAS upholes for simulta-neous land near-surface characterization and subsurface imaging // Lead. Edge. 2017. V. 36, N 12. P.1001–1008. https://doi.org/10.1190/tle36121001.1

Bakulin A., Golikov P., Erickson K., Silvestrov I., Kim Y.S., Smith R., Al-Ali M. Seismic imaging of vertical array data acquired using smart DAS uphole acquisition system // SEG Technical Program Expanded Abstracts. 2018. P. 4050–4054. https://doi.org/10.1190/segam2018-2995404.1

Bakulin A., Silvestrov I., Pevzner R. Surface seismics with DAS: An emerging alternative to modern point-sensor acquisition // Lead. Edge. 2020. V. 39, N 11. P.808–818. http://dx.doi.org/10.1190/tle39110808.1

Barrias A., Casas J.R., Villalba S. A review of distributed optical fiber sensors for civil engineering applications // Sensors. 2016. V. 16, Iss. 5. Art. 748. https://doi.org/10.3390/s16050748

Becker M.W., Ciervo C., Cole M., Coleman T. Mondanos M. Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies // Geophys. Res. Lett. 2017. V. 44, Iss. 14. P.7295–7302. https://doi.org/10.1002/2017GL073931

Becker M.W., Ciervo C., Coleman T. Laboratory testing of low frequency strain measured by distri-buted acoustic sensing // SEG Technical Program Expanded Abstracts. 2018. P.4963–4966. https://doi.org/10.1190/segam2018-2997900.1

Bellefleur G., Schetselaar E., Wade D., White D., Enkin R. Schmitt D.R. Vertical seismic profiling us-ing distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu–Au New Afton porphyry deposit, British Columbia, Canada // Geophys. Prospect. 2020. V. 68. P.313–333. https://doi.org/10.1111/1365-2478.12828

Binder G., Chakraborty D. Detecting microseismic events in downhole distributed acoustic sensing data using convolutional neural networks // SEG Technical Program Expanded Abstracts. 2019. P.4864–4868. https://doi.org/10.1190/segam2019-3214863.1

Binder G., Titov A., Liu Y., Simmons J., Tura A., Byerley G., Monk D. Modeling the seismic response of individual hydraulic fracturing stages observed in a time-lapse distributed acoustic sensing ver-tical seismic profiling survey // Geophysics. 2020. V. 85. P.T225–T235. http://dx.doi.org/10.1190/geo2019-0819.1

Booth A.D., Christoffersen P., Schoonman C., Clarke A., Hubbard B., Law R., Doyle S.H., Chud-ley T.R., Chalari A. Distributed acoustic sensing of seismic properties in a borehole drilled on a fast-flowing greenlandic outlet glacier // Geophys. Res. Lett. 2020. V. 47, N 13. Art. e2020GL088148. https://doi.org/10.1029/2020GL088148

Borodin I., Segal A. Real-time hydraulic fracture monitoring and wellbore characterization with distri-buted acoustic sensing of pumping noise // Lead. Edge. 2020. V. 39. P.785–792. http://dx.doi.org/10.1190/tle39110785.1

Chambers K. What is DAS and what is it measuring? [Электронный ресурс]. URL: https://motionsignaltechnologies.com/what-is-das-and-what-is-it-measuring (дата обращения: 12.01.2022).

Chang T., Wang Z., Yang Y., Zhang Y., Zheng Z., Cheng L., Cui H.-L. Fiber optic interferometric seismometer with phase feedback control // Opt. Express. 2020. V. 28. P.6102–6122. https://doi.org/10.1364/OE.385703

Chapeleau X., Bassil A. A general solution to determine strain profile in the core of distributed fiber optic sensors under any arbitrary strain fields // Sensors. 2021. V. 21, Iss. 16. Art. 5423. https://doi.org/10.3390/s21165423

Chen D., Liu Q., He Z. 108-km distributed acoustic sensor with 220-pε / hz strain resolution and 5-m spatial resolution // J. Lightwave Tech. 2019. V. 37, N 18. P.4462–4468. https://doi.org/10.1109/JLT.2019.2901276

Cheng F., Chi B., Lindsey N.J., Dawe T.C., Ajo-Franklin J.B. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization // Sci. Rep. 2021. V. 11. P.1–14. https://doi.org/10.1038/s41598-021-84845-y

Correa J., Pevzner R., Bona A., Tertyshnikov K., Freifeld B., Robertson M., Daley T. 3D vertical seis-mic profile acquired with distributed acoustic sensing on tubing installation: A case study from the CO2CRC Otway Project // Interpretation. 2019. V. 7, Iss. 1. P.SA11–SA19. https://doi.org/10.1190/INT-2018-0086.1

Coscetta A., Minardo A., Zeni L. Distributed dynamic strain sensing based on Brillouin scattering in optical fibers // Sensors. 2020. V. 20, Iss. 19. Art. 5629. https://doi.org/10.3390/s20195629

Currenti G., Jousset P., Chalari A., Zuccarello L., Napoli R., Reinsch T., Krawczyk C. Fibre optic dis-tributed acoustic sensing of volcanic events at Mt Etna // EGU General Assembly, 2020. EGU2020-11641. https://doi.org/10.5194/egusphere-egu2020-11641

Daley T.M., Freifeld B.M., Ajo-Franklin J., Dou S., Pevzner R., Shulakova V., Kashikar S., Mil-ler D.E., Goetz J., Henninges J., Lueth S. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring // Lead. Edge. 2013. V. 32, N. 6. P.699–706. https://doi.org/10.1190/tle32060699.1

Daley T.M., Miller D.E., Dodds K., Cook P., Freifeld B.M. Field testing of modular borehole monitor-ing with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Ci-tronelle, Alabama // Geophys. Prospect. 2016. V. 64, N 5. P.1318–1334. https://doi.org/10.1111/1365-2478.12324

Dean T., Cuny T., Hartog A.H. The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing // Geophys. Prospect. 2017. V. 65, N 1. P.184–193. https://doi.org/10.1111/1365-2478.12419

Denisov A., Soto M. Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration // Light Sci. App. 2016. V. 5. Art. e16074. https://doi.org/10.1038/lsa.2016.74

Distributed Acoustic Sensing in Geophysics: Methods and Applications / Eds. Y. Li, M. Karrenbach, J. Ajo-Franklin. John Wiley & Sons, 2021. 320 p. ISBN1119521793, 9781119521792

Dong B., Tribaldos V.R., Xing X., Byna S., Ajo-Franklin J.B., Wu K. DASSA: Parallel DAS data stor-age and analysis for subsurface event detection // IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2020. P. 254–263. https://doi.org/10.1109/IPDPS47924.2020.00035

Dou S., Lindsey N., Wagner A.M., Daley T.M., Freifeld B., Robertson M., Peterson J., Ulrich C., Mar-tin E.R., Ajo-Franklin J.B. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study // Sci. Rep. 2017. V. 7, N 1. Art. 11620. https://doi.org/10.1038/s41598-017-11986-4

Fang G., Li Y.E., Zhao Y., Martin E.R. Urban near-surface seismic monitoring using distributed acous-tic sensing // Geophys. Res. Lett. 2020. V. 47. Art. e2019GL086115. https://doi.org/10.1029/2019GL086115

Faucher F., de Hoop M.V., Scherzer O. Reciprocity-gap misfit functional for distributed acoustic sens-ing, combining data from passive and active sources // Geophysics. 2021. V. 86, N 2. P.R211–R220. https://doi.org/10.1190/geo2020-0305.1

Fedorov A.K., Anufriev M.N., Zhirnov A.A., Stepanov K.V., Nesterov E.T., Namiot D.E., Karasik V., Pnev A. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems // Rev. Sci. Instr. 2016. V. 87, N 3. Art. 036107. https://doi.org/10.1063/1.4944417

Fenta M.C., Potter D.K., Szanyi J. Fibre optic methods of prospecting: A comprehensive and modern branch of geophysics // Surv. Geophys. 2021. V. 42. P.551–584. https://doi.org/10.1007/s10712-021-09634-8

Fernandez I., Berrocal C.G., Rempling R. Long-term performance of distributed optical fiber sensors embedded in reinforced concrete beams under sustained deflection and cyclic loading // Sensors. 2021. V. 21, Iss. 19. Art. 6338. https://doi.org/10.3390/s21196338

Fernández-Ruiz M.R., Martins H.F., Pastor-Graells J., Martin-Lopez S., Gonzalez Herraez M. Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading // Opt. Lett. 2016. V. 41, N 24. P.5756–5759. https://doi.org/10.1364/OL.41.005756

Fernández-Ruiz M.R., Soto M.A., Williams E.F., Martin-Lopez S., Zhan Z., González Herráez M., Martins H. Distributed acoustic sensing for seismic activity monitoring // APL Photonics. 2020. V. 5. Art. 030901. https://doi.org/10.1063/1.5139602

Foster S. Thermal noise limits for optical time domain reflectometry // J. Lightwave Tech. 2021. V. 39, N 8. P.2514–2521. https://doi.org/10.1109/JLT.2021.3052192

Fu Y., Wang Z., Zhu R., Xue N., Jiang J., Lu C., Zhang B., Yang L., Atubga D., Rao Y. Ultra-long-distance hybrid BOTDA/Ф-OTDR // Sensors. 2018. V. 18, Iss. 4. Art. 976. https://doi.org/10.3390/s18040976

Gabai H., Eyal A. On the sensitivity of distributed acoustic sensing // Opt. Lett. 2016. V. 41, N 24. P.5648–5651. https://doi.org/10.1364/OL.41.005648

Gabai H., Botsev Y., Hahami M., Eyal A. Optical frequency domain reflectometry at maximum update rate using I/Q detection // Opt. Lett. 2015. V. 40, N 8. P.1725–1728. https://doi.org/10.1364/OL.40.001725

Galkovski T., Lemcherreq Y., Mata-Falcón J., Kaufmann W. Fundamental studies on the use of distri-buted fibre optical sensing on concrete and reinforcing bars // Sensors. 2021. V. 21, Iss. 22. Art. 7643. https://doi.org/10.3390/s21227643

Gorshkov B.G., Taranov M.A. Simultaneous optical fibre strain and temperature measurements in a hybrid distributed sensor based on Rayleigh and Raman scattering // Quantum Electronics. 2018. V. 48, N 2. Art. 184. http://dx.doi.org/10.1070/QEL16541

Gorshkov B.G., Gorshkov G.B., Taranov M.A. Simultaneous temperature and strain sensing using dis-tributed Raman optical time-domain reflectometry // Laser Phys. Lett. 2017. V. 14, N 1. Art. 015103. https://doi.org/10.1088/1612-202x/14/1/015103

Gutscher M.-A., Royer J.-Y., Graindorge D., Murphy S., Klingelhoefer F., Aiken C., Cattaneo A., Bar-reca G., Quetel L., Riccobene G., Aurnia S., Petersen F., Lange D., Urlaub M., Krastel S., Gross F., Kopp H., Moretti M., Beranzoli L., Lo Bue N. and the FOCUS Team. The FOCUS experiment 2020 (Fiber optic cable use for seafloor studies of earthquake hazard and deformation) // EGU General Assembly, 2020. EGU2020-5369. https://doi.org/10.5194/egusphere-egu2020-5369

Han B., Guan H., Yao J., Rao Y.-J., Ran Z., Gong Y., Li Q., Li M., Zhang R., An S., Yu G., Wang X. Distributed acoustic sensing with sensitivity-enhanced optical cable // IEEE Sensors Journal. 2021. V. 21, N 4. P.4644–4651. https://doi.org/10.1109/JSEN.2020.3035002

Hartog A.H. Distributed sensors in the oil and gas industry // Optical Fibre Sensors / Eds. del Villar I., Matias I.R. Hoboken, NJ: John Wiley & Sons, 2020. P.151–191. https://doi.org/10.1002/ 9781119534730.ch6

He H., Yan L., Qian H., Zhang X., Luo B., Pan W. Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity // Opt. Express. 2020a. V. 28, Iss. 1. P.226–237. https://doi.org/10.1364/OE.378257

He X., Xu X., Zhang M., Xie S., Liu F., Gu L., Zhang Y., Yang Y., Lu H. On the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing system // Opt. Express. 2020b. V. 28, Iss. 22. P.33433–33447. https://doi.org/10.1364/OE.403263

Henninges J., Martuganova E., Stiller M., Norden B., Krawczyk C. Vertical seismic profiling with dis-tributed acoustic sensing images the Rotliegend geothermal reservoir in the North German Basin down to 4.2 km depth // Solid Earth. 2020. Preprint. https://doi.org/10.5194/se-2020-169

Hong C.-Y., Zhang Y.-F., Zhang M.-X., Ming L. Leung G., Liu L.-Q. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques // Sensors and Actuators A: Physical. 2016. V. 244. P.184–197. https://doi.org/10.1016/j.sna.2016.04.033

Hornman J.C. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables // Geophys. Prospect. 2017. V. 65. P.35–46. https://doi.org/10.1111/1365-2478.12358

Howe B.M., Arbic B.K., Aucan J., Barnes C.R., Bayliff N., Becker N., Butler R., Doyle L., Elipot S., Johnson G.C., Landerer F., Lentz S., Luther D.S., Müller M., Mariano J., Panayotou K., Rowe C., Ota H., Song Y.T., Thomas M., Thomas P.N., Thompson P., Tilmann F., Weber T., Weinstein S. SMART cables for observing the global ocean: science and implementation // Frontiers in Marine Science. 2019. V. 6. P.424. https://doi.org/10.3389/fmars.2019.00424

Hudson T.S., Baird A.F., Kendall J.M., Kufner S.K., Brisbourne A.M., Smith A.M., Butcher A., Chala-ri A., Clarke A. Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from Antarctica // J. Geophys. Res.: Solid Earth. 2021. V. 126. Art. e2020JB021493. https://doi.org/10.1029/2020JB021493

Huff O., Lellouch A., Luo B., Jin G., Biondi B. Validating the origin of microseismic events in target reservoir using guided waves recorded by DAS // Lead. Edge. 2020. V. 39. P.776–784. http://dx.doi.org/10.1190/tle39110776.1

Hull R., Meek R., Bello H., Woller K., Wagner J. Monitoring horizontal well hydraulic stimulations and geomechanical deformation processes in the unconventional shales of the Midland Basin using fiber-based time-lapse VSPs, microseismic, and strain data // Lead. Edge. 2019. V. 38, Iss. 2. P.82–168. https://doi.org/10.1190/tle38020130.1

Huot F., Biondi B. Machine learning algorithms for automated seismic ambient noise processing ap-plied to DAS acquisition // SEG Technical Program Expanded Abstracts, 2018. P.5501–5505. https://doi.org/10.1190/segam2018-w20-03.1

Ichikawa M., Uchida S., Katou M., Kurosawa I., Tamura K., Kato A., Ito Y., De Groot M., Hara S. Case study of hydraulic fracture monitoring using multiwell integrated analysis based on low-frequency DAS data // Geophysics. 2020. V. 39. P.794–800. http://dx.doi.org/10.1190/tle39110794.1

Ide S., Araki E. Matsumoto H. Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan // Earth Planets Space. 2021. V. 73. Art. 63. https://doi.org/10.1186/s40623-021-01385-5

Iida D., Honda N., Oshida H. Advances in distributed vibration sensing for optical communication fi-ber state visualization // Optical Fiber Tech. 2020. V. 57. Art. 102263. https://doi.org/10.1016/j.yofte.2020.102263

Ivanov V., Longoni L., Ferrario M., Brunero M., Arosio D., Papini M. Applicability of an interferome-tric optical fibre sensor for shallow landslide monitoring – Experimental tests // Engineering Ge-ology. 2021. V. 288. Art. 106128. https://doi.org/10.1016/j.enggeo.2021.106128

Jestin C., Hibert C., Calbris G., Lanticq V. Integration of machine learning on distributed acoustic sensing surveys // EGU General Assembly, 2020. EGU2020-7495. https://doi.org/10.5194/egusphere-egu2020-7495

Jia H., Liang S., Lou S., Sheng X. A k-nearest neighbor algorithm-based near category support vector machine method for event identification of φ-OTDR // IEEE Sensors Journal. 2019. V. 19, N 10. P.3683–3689. https://doi.org/10.1109/JSEN.2019.2891750

Jousset P., Reinsch T., Ryberg T., Blanck H., Clarke A., Aghayev R., Hersir G.P., Henninge J., We-ber M., Krawczyk C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features // Nat. Commun. 2018. V. 9, N 1. Art. 2509. https://doi.org/10.1038/s41467-018-04860-y

Kapa T., Schreier A., Krebber K. A 100-km BOFDA assisted by first-order bi-directional Raman am-plification // Sensors. 2019. V. 19, Iss. 7. Art. 1527. https://doi.org/10.3390/s19071527

Keul P.R., Mastin E., Blanco J., Maguerez M., Bostick T., Knudsen S. Using a fiber-optic seismic array for well monitoring // Lead. Edge. 2005. V. 24, N 1. P.68–70. https://doi.org/10.1190/1.1859704

Kishida K., Guzik A., Nishiguchi K., Li C.-H., Azuma D., Liu Q., He Z. Development of real-time time gated digital (TGD) OFDR method and its performance verification // Sensors. 2021. V. 21, Iss. 14. Art. 4865. https://doi.org/10.3390/s21144865

Kislov K.V., Gravirov V.V. Some remarks on the seismometric experiments taking into account the thickness of the frozen layer soil // Problems of Geocosmos–2018. Springer Proceedings in Earth and Environmental Sciences / Eds. T. Yanovskaya, A. Kosterov, N. Bobrov, A. Divin, A. Saraev, N. Zolotova. Cham: Springer, 2020. P.263–269. https://doi.org/10.1007/978-3-030-21788-4_22

Klaasen S., Paitz P., Lindner N., Dettme J., Fichtner A. Distributed acoustic sensing in volcano-glacial environments – Mount Meager, British Columbia // J. Geophys. Res.: Solid Earth. 2021. V. 126. Art. e2021JB022358. https://doi.org/10.1029/2021JB022358

Klaasen S., Thrastarson S., Fichtner A., Çubuk-Sabuncu Y., Jónsdóttir K. Sensing Iceland’s most ac-tive volcano with a “buried hair” // Eos. 2022. Art. 103. https://doi.org/10.1029/2022EO220007

Kobayashi Y., Uematsu Y., Mochiji S., Xue Z. A field experiment of walkaway distributed acoustic sensing vertical seismic profile in a deep and deviated onshore well in Japan using a fibre optic cable deployed inside coiled tubing // Geophys. Prospect. 2020. V. 68. P.501–520. https://doi.org/10.1111/1365-2478.12863

Krebber K. Smart technical textiles based on fiber optic sensors. [Электронный ресурс]. URL: https://www.intechopen.com/chapters/45075 (дата обращения: 12.01.2022).

Kuvshinov B. Interaction of helically wound fibre-optic cables with plane seismic waves // Geophys. Prospect. 2016. V. 64, N 3. P.671–688. https://doi.org/10.1111/1365-2478.12303

Kye M., Lee S.-M., Choi K.-M., Lee Y. Park K.-Y. A surveillance system of fiber-optic cables with multi-channel DAS and CNN // IEEE Photonics Technol. Lett. 2021. V. 33, N 15. P.753–756. https://doi.org/10.1109/LPT.2021.3091145

Lellouch A., Biondi B.L. Seismic applications of downhole DAS // Sensors. 2021. V. 21, Iss. 9. Art. 2897. https://doi.org/10.3390/s21092897

Lellouch A., Meadows M.A., Nemeth T., Biondi B. Fracture properties estimation using distributed acoustic sensing recording of guided waves in unconventional reservoirs // Geophysics. 2020. V. 85. P. M85–M95. http://dx.doi.org/10.1190/geo2019-0793.1

Lellouch A., Biondi E., Biondi B.L., Luo B., Jin G., Meadows M.A. Properties of a deep seismic wave-guide measured with an optical fiber // Phys. Rev. Res. 2021a. V. 3. Art. 013164. https://doi.org/10.1103/PhysRevResearch.3.013164

Lellouch A., Schultz R., Lindsey N.J., Biondi B.L., Ellsworth W.L. Low-magnitude seismicity with a downhole distributed acoustic sensing array – Examples from the FORGE geothermal experi-ment // J. Geophys. Res.: Solid Earth. 2021b. V. 126, Iss. 1. Art. e2020JB020462. https://doi.org/10.1029/2020JB020462

Li Z., Zhan Z. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: a case study at the Brady geothermal field // Geophys. J. Int. 2018. V. 215, Iss. 3. P.1583–1593. https://doi.org/10.1093/gji/ggy359

Li Z., Shen Z., Yang Y., Williams E., Wang X., Zhan Z. Rapid response to the 2019 Ridgecrest earth-quake with distributed acoustic sensing // AGU Advances. 2021. N 2. Art. e2021AV000395. https://doi.org/10.1029/2021AV000395

Liang J., Wang Z., Lu B., Wang X., Li L., Ye Q., Qu R., Cai H. Distributed acoustic sensing for 2D and 3D acoustic source localization // Opt. Lett. 2019. V. 44. P.1690–1693. https://doi.org/10.1364/OL.44.001690

Lindsey N.J., Martin E.R. Fiber-optic seismology // Ann. Rev. Earth Planet. Sci. 2021. V. 49, N 1. P.309–336. https://doi.org/10.1146/annurev-earth-072420-065213

Lindsey N.J., Martin E.R., Dreger D.S., Freifeld B., Cole S., James S.R., Biondi B.L., Ajo-Franklin J. B. Fiber-optic network observations of earthquake wavefields // Geophys. Res. Lett. 2017. V. 44, N 23. P.11792–11799. https://doi.org/10.1002/2017GL075722

Lindsey N.J., Rademacher H., Ajo-Franklin J.B. On the broadband instrument response of fiber-optic DAS arrays // J. Geophys. Res.: Solid Earth. 2020. V. 125, N 2. Art. e2019JB018145. https://doi.org/10.1029/2019JB018145

Liokumovich L.B., Ushakov N.A., Kotov O.I., Bisyarin M.A., Hartog A.H. Fundamentals of optical fi-ber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions // J. Lightwave Tech. 2015. V. 33, N 17. P.3660–3671. https://doi.org/10.1109/JLT.2015.2449085

Lior I., Sladen A., Rivet D., Ampuero J.-P., Hello Y. M., Lamare P., Jestin C., Tsagkli S., Markou C. On the detection capabilities of underwater DAS // J. Geophys. Res.: Solid Earth. 2020. Open Archive AID. https://doi.org/10.1002/essoar.10504330.1

Lior I., Sladen A., Mercerat D., Ampuero J.-P., Rivet D., Sambolian S. Strain to ground motion con-version of distributed acoustic sensing data for earthquake magnitude and stress drop determination // Solid Earth. 2021a. V. 12. P.1421–1442. https://doi.org/10.5194/se-12-1421-2021

Lior I., Sladen A., Rivet D., Ampuero J.-P., Hello Y., Becerril C., Martins H.F., Lamare P., Jestin C., Tsagkli S., Markou C. On the detection capabilities of underwater distributed acoustic sensing // J. Geophys. Res.: Solid Earth. 2021b. V. 126, N 3. Art. e2020JB020925. https://doi.org/10.1029/2020JB020925

Liu S.P., Shi B., Gu K., Zhang C.-C., He J.-H., Wu J.-H., Wei G.-Q. Fiber-optic wireless sensor net-work using ultra-weak fiber Bragg gratings for vertical subsurface deformation monitoring // Nat. Hazards. 2021. V. 109. P.2557–2573. https://doi.org/10.1007/s11069-021-04932-1

Liu Y., Jin G., Wu K., Moridis G. Hydraulic-fracture-width inversion using low-frequency distributed-acoustic-sensing strain data – Part I: Algorithm and sensitivity analysis // SPE J. 2021a. V. 26, N 01. P.359–371. https://doi.org/10.2118/204225-PA

Liu Y., Wu K., Jin G., Moridis G., Kerr E., Scofield R., Johnson A. Fracture-hit detection using LF-DAS signals measured during multifracture propagation in unconventional reservoirs // SPE Res. Eval & Eng. 2021b. V. 24, N 03. P.523–535. https://doi.org/10.2118/204457-PA

Liu Y., Yang J., Wu B., Lu B., Shuai L., Wang Z., Ye L., Ying K., Ye Q., Qu R., Cai H. High SNR Φ-OTDR with multi-transverse modes heterodyne matched-filtering technology // Sensors. 2021c. V. 21, Iss. 22. Art. 7460. https://doi.org/10.3390/s21227460

Lopez-Mercado C.A., Korobko D.A., Zolotovskii I.O., Fotiadi A.A. Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis // Sensors. 2021. V. 21, Iss. 20. Art. 6859. https://doi.org/10.3390/s21206859

Lu P., Lalam N., Badar M., Liu B., Chorpening B.T., Buric M.P., Ohodnicki P.R. Distributed optical fiber sensing: review and perspective // Appl. Phys. Rev. 2019. V. 6, N 4. P.1–35. https://doi.org/10.1063/1.5113955

Lund B., Stork A., Roth M., David A., Clarke A., Nygren C., Johansson S. Comparing high-sensitivity geophones to fiber-optic DAS technologies in a hard-rock VSP survey // EGU General Assembly, 2020. EGU2020-18525. https://doi.org/10.5194/egusphere-egu2020-18525

Luo B., Trainor-Guitton W., Bozdağ E., LaFlame L., Cole S., Karrenbach M. Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves // Geophys. J. Int. 2020. V. 222, N 3. P.2147–2161. https://doi.org/10.1093/gji/ggaa293

Luo B., Jin G., Stanek F. Near-field strain in distributed acoustic sensing-based microseismic observa-tion // Geophysics. 2021. V. 86, N 5. P.49–60. https://doi.org/10.1190/geo2021-0031.1

Lv H., Zeng X., Bao F., Xie J., Lin R., Song Z., Zhang G. ADE-Net: A deep neural network for DAS earthquake detection trained with a limited number of positive samples // IEEE Transactions on Geos-cience and Remote Sensing. 2022. (Early Access). https://doi.org/10.1109/TGRS.2022.3143120

Marra G., Clivati C., Luckett R., Tampellini A., Kronjäger J., Wright L., Mura A., Levi F., Robin-son S., Xuereb A., Baptie B., Calonico D. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables // Science. 2018. V. 361, Iss. 6401. P.486–490. https://doi.org/10.1126/science.aat4458

Martins H.F., Shi K., Thomsen B.C., Martin-Lopez S., Gonzalez-Herraez M., Savory S.J. Real time dynamic strain monitoring of optical links using the back reflection of live PSK data // Opt. Ex-press. 2016. V. 24. P.22303–22318. https://doi.org/10.1364/OE.24.022303

Masoudi A., Newson T.P. Contributed Review: Distributed optical fibre dynamic strain sensing // Rev. Sci. Instr. 2016. V. 87. Art. 011501. https://doi.org/10.1063/1.4939482

Mateeva A., Lopez J., Chalenski D., Tatanova M., Zwartjes P., Yang Z., Bakku S., De Vos K., Pot-ters H. 4D DAS VSP as a tool for frequent seismic monitoring in deep water // Lead. Edge. 2017. V. 36. P.995–1000. https://doi.org/10.1190/tle36120995.1

Matias L., Omar Y., Carrilho F., Sá V., Omira R., Corela C., Perdigão R.A.P., Loureiro A. The contribution of the CAM fibre optic submarine cable telecom ring to the early warning of tsunami and earthquakes // EGU General Assembly, 2020. EGU2020-13988. https://doi.org/10.5194/egusphere-egu2020-13988

Matsumoto H., Araki E., Kimura T., Fujie G., Shiraishi K., Tonegawa T., Obana K., Arai R., Kaiho Y., Nakamura Y., Yokobiki T., Kodaira S., Takahashi N., Ellwood R., Yartsev V., Karrenbach M. Detection of hydroacoustic signals on a fiber-optic submarine cable // Sci Rep. 2021. V. 11. Art. 2797. https://doi.org/10.1038/s41598-021-82093-8

Meng Z., Chen W., Wang J., Hu X., Chen M., Zhang Y. Recent progress in fiber-optic hydrophones // Photonic Sens. 2021. V. 11. P.109–122. https://doi.org/10.1007/s13320-021-0618-5

Min R., Liu Z., Pereira L., Yang C., Sui Q., Marques C. Optical fiber sensing for marine environment and marine structural health monitoring: A review // Opt. Laser Technol. 2021. V. 140. Art. 107082. https://doi.org/10.1016/j.optlastec.2021.107082

Minardo A., Bernini R., Ruiz-Lombera R., Mirapeix J., Lopez-Higuera J.M., Zeni L. Proposal of Bril-louin optical frequency-domain reflectometry (BOFDR) // Opt. Express. 2016. V. 24. P.29994–30001. https://doi.org/10.1364/OE.24.029994

Minardo A., Zeni L., Coscetta A., Catalano E., Zeni G., Damiano E., De Cristofaro M., Olivares L. Distributed optical fiber sensor applications in geotechnical monitoring // Sensors. 2021. V. 21, Iss. 22. Art. 7514. https://doi.org/10.3390/s21227514

Mizuno Y., Lee H., Nakamura K. Recent advances in Brillouin optical correlation-domain reflectometry // Appl. Sci. 2018. V. 8, N 10. Art. 1845. https://doi.org/10.3390/app8101845

Motil A., Bergman A., Tur M. State of the art of Brillouin fiber-optic distributed sensing // Opt. Laser Technol. 2016. V. 78. P.81–103. https://doi.org/10.1016/j.optlastec.2015.09.013

Muanenda Y. Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry // J. Sensors. 2018. V. 2018. Art. 3897873. https://doi.org/10.1155/2018/3897873

Naldrett G., Parker T., Shatalin S., Mondanos M. High-resolution Carina distributed acoustic fibre- optic sensor for permanent reservoir monitoring and extending the reach into subsea fields // First Break. 2020. V. 38. P.71–76. https://doi.org/10.3997/1365-2397.fb2020012

Nayak A., Ajo-Franklin J. The Imperial Valley dark fiber team. Distributed acoustic sensing using dark fiber for array detection of regional earthquakes // Seismol. Res. Lett. 2021a. V. 92, N 4. P.2441–2452. https://doi.org/10.1785/0220200416

Nayak A., Ajo-Franklin J. The Imperial Valley dark fiber team. Measurement of surface-wave phase-velocity dispersion on mixed inertial seismometer – Distributed acoustic sensing seismic noise cross-correlations // Bull. Seismol. Soc. Amer. 2021b. V. 111, N 6. P.3432–3450. https://doi.org/10.1785/0120210028

Ning I.L.C., Sava P. High-resolution multi-component distributed acoustic sensing // Geophys. Pros-pect. 2018a. V. 66. P.1111–1122. https://doi.org/10.1111/1365-2478.12634

Ning I.L.C., Sava P. Multicomponent distributed acoustic sensing: Concept and theory // Geophysics. 2018b. V. 83, N 2. P. 1MA–Z8. https://doi.org/10.1190/geo2017-0327.1

Paitz P., Edme P., Gräff D., Walter F., Doetsch J., Chalari A., Schmelzbach C., Fichtner A. Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 oc-taves // Bull. Seismol. Soc. Amer. 2020. V. 111, N 1. P.1–10. https://doi.org/10.1785/0120200185

Papp B., Donno D., Martin J.E., Hartog A.H. A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments // Geophys. Prospect. 2017. V. 65. P.1186–1204. https://doi.org/10.1111/1365-2478.12471

Parker L.M., Thurber C.H., Zeng X., Li P., Lord N.E., Fratta D., Wang H.F., Robertson M.C., Tho-mas A.M., Karplus M.S., Nayak A., Feigl K.L. Active-source seismic tomography at the Brady geothermal field, Nevada, with dense nodal and fiber-optic seismic arrays // Seismol. Res. Lett. 2018. V. 89, N 5. P.1629–1640. https://doi.org/10.1785/0220180085

Pastor-Graells J., Martins H. F., Garcia-Ruiz A., Martin-Lopez S., Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses // Opt. Express. 2016. V. 24. P.13121–13133. https://doi.org/10.1364/OE.24.013121

Peng F., Cao X. A hybrid Φ/B-OTDR for simultaneous vibration and strain measurement // Photonic Sens. 2016. V. 6, N 2. P.121–126. https://doi.org/10.1007/s13320-016-0289-9

Pevzner R., Gurevich B., Pirogova A., Tertyshnikov K., Glubokovskikh S. Repeat well logging using earthquake wave amplitudes measured by distributed acoustic sensors // Lead. Edge. 2020. V. 39. P.513–517. http://dx.doi.org/10.1190/tle39070513.1

Popik S., Pevzner R., Bona A., Tertyshnikov K., Glubokovskikh S., Gurevich B. Estimation of P-wave anisotropy parameters from 3D vertical seismic profile with distributed acoustic sensors and geo-phones for seismic imaging in the CO2CRC Otway Project // Geophys. Prospect. 2021. V. 69. P.842–855. https://doi.org/10.1111/1365-2478.13080

Rajan G. Optical Fiber Sensors: Advanced Techniques and Applications. Boca Raton, FL: CRC Press, 2017. 575 p.



Ramakrishnan M., Rajan G., Semenova Y., Boczkowska A., Domański A., Wolinski T., Farrell G. Measurement of thermal elongation induced strain of a composite material using a polarization maintaining photonic crystal fiber sensor // Sens. Actuators Phys. 2013. V. 190. P.44–51. https://doi.org/10.1016/j.sna.2012.11.010

Rao Y., Wang Z., Wu H., Ran Z., Han B. Recent advances in phase-sensitive optical time domain ref-lectometry (Ф-OTDR) // Photonic Sens. 2021. V. 11. P.1–30. https://doi.org/10.1007/s13320-021-0619-4

Reinsch T., Thurley T., Jousset P. On the mechanical coupling of a fiber optic cable used for distributed acoustic/vibration sensing applications—a theoretical consideration // Meas. Sci. Technol. 2017. V. 28, N 12. Art. 127003. http://dx.doi.org/10.1088/1361-6501/aa8ba4

Reinsch T., Jousset P., Krawczyk C.M. Fiber Optic Distributed Strain Sensing for Seismic Applications // Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series / Ed. Gupta H.K. Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-10475-7_284-1

Rohwetter P., Eisermann R., Krebber K. Random quadrature demodulation for direct detection single-pulse Rayleigh C-OTDR // J. Lightwave Tech. 2016. V. 34, N 19. P.4437–4444. https://doi.org/10.1109/JLT.2016.2557586

Sheng L., Yan J., Li L., Yuan M., Zhou S., Xu R., Liu J., Nian F., Li L., Liu Z. Distributed temperature sensing system based on Brillouin scattering effect using a single-photon detector // Int. J. Opt. 2021. V. 2021. Art. 6623987. https://doi.org/10.1155/2021/6623987

Shi Y., Wang Y., Zhao L., Fan Z. An event recognition method for Φ-OTDR sensing system based on deep learning // Sensors. 2019. V. 19, Iss. 15. Art. 3421. https://doi.org/10.3390/s19153421

Shinohara M., Yamada T., Akuhara T., Mochizuki K., Sakai S. Precise distributed acoustic sensing measurements by using seafloor optical fiber cable system for seismic monitoring // EGU General Assembly, 2020. EGU2020-12055. https://doi.org/10.5194/egusphere-egu2020-12055

Shragge J., Yang J., Issa N., Roelens M., Dentith M., Schediwy S. Low-frequency ambient distributed acoustic sensing (DAS): case study from Perth, Australia // Geophys. J. Int. 2021. V. 226, N 1. P.564–581. https://doi.org/10.1093/gji/ggab111

Shuvalov A.A., Pnev A.B., Ignatev V.I., Zhirnov A.A., Chernutsky A.O., Nesterov E.T. Possibility of distributed acoustic sensing (DAS) for geophysical problems solution // Conference Proceedings, Engineering and Mining Geophysics 2018. European Association of Geoscientists & Engineers, 2018. V. 2018. P.1–7. https://doi.org/10.3997/2214-4609.201800591

Sladen A., Rive D., Ampuero J.P., De Barros L., Hello Y., Calbris G., Lamare P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables // Nat. Commun. 2019. V. 10. Art. 5777. https://doi.org/10.1038/s41467-019-13793-z

Smolinski K., Paitz P., Bowden D., Edme P., Kugler F., Fichtner A. Urban distributed acoustic sensing using in-situ fibre beneath Bern, Switzerland // EGU General Assembly, 2020. EGU2020-8225. https://doi.org/10.5194/egusphere-egu2020-8225

Song Z., Zeng X., Thurber C.H. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing // Geophysics. 2021a. V. 86, N 1. P.EN1–EN12. https://doi.org/10.1190/geo2019-0691.1

Song Z., Zeng X., Xie J., Bao F., Zhang G. Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area // Surv. Geophys. 2021b. V. 42. P.1401–1423. https://doi.org/10.1007/s10712-021-09678-w

Soriano-Amat M., Martins H.F., Durán V., Costa L., Martin-Lopez S., Gonzalez Herraez M., Fernández-Ruiz M.R. Time-expanded phase-sensitive optical time-domain reflectometry // Light Sci. App. 2021. V. 10. Art. 51. https://doi.org/10.1038/s41377-021-00490-0

Spica Z.J., Nishida K., Akuhara T., Pétrélis F., Shinohara M., Yamada T. Marine sediment characte-rized by ocean-bottom fiber-optic seismology // Geophys. Res. Lett. 2020a. V. 47, N 16. Art. e2020GL088360. https://doi.org/10.1029/2020GL088360

Spica Z.J., Perton M., Martin E.R., Beroza G.C., Biondi B. Urban seismic site characterization by fi-ber-optic seismology // J. Geophys. Res.: Solid Earth. 2020b. V. 125. P.1–14. https://doi.org/10.1029/2019JB018656





Stork A.L., Baird A.F., Horne S.A., Naldrett G., Lapins S., Kendall J.-M., Wookey J., Verdon J.P., Clarke A., Williams A. Application of machine learning to microseismic event detection in distri-buted acoustic sensing data // Geophysics. 2020. V. 85. P.KS149–KS160. http://dx.doi.org/10.1190/geo2019-0774.1

Tangudu R., Sahu P.K. Strain resolution and spatial resolution improvement of BOCDR-Based DSS system using particle swarm optimization algorithm // Optical and Wireless Technologies. Lecture Notes in Electrical Engineering / Eds. V. Janyani, G. Singh, M. Tiwari, A. d’Alessandro. V. 546. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-13-6159-3_20

Taweesintananon K., Landrø M., Brenne J.K., Haukanes A. Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: A case study in the Trondheimsfjord, Norway // Geophysics. 2021. V. 86, N 5. P.B303–B320. https://doi.org/10.1190/geo2020-0834.1

Titov A., Binder G., Liu Y., Jin G., Simmons J., Tura A., Monk D., Byerley G., Yates M. Modeling and interpretation of scattered waves in interstage distributed acoustic sensing vertical seismic profiling survey // Geophysics. 2021. V. 86. P.D93–D102. http://dx.doi.org/10.1190/geo2020-0293.1

Tribaldos V.R., Ajo-Franklin J.B. Aquifer monitoring using ambient seismic noise recorded with dis-tributed acoustic sensing (DAS) deployed on dark fiber // J. Geophys. Res.: Solid Earth. 2021. V. 126, N 4. Art. e2020JB021004. https://doi.org/10.1029/2020JB021004

van den Ende M.P.A., Ampuero J.-P. Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays // Solid Earth. 2021. V. 12. P.915–934. https://doi.org/10.5194/se-12-915-2021

van Putten L.D., Masoudi A., Snook J., Brambilla G. Numerical modelling of a distributed acoustic sensor based on ultra-low loss-enhanced backscattering fibers // Sensors. 2021. V. 21, Iss. 20. Art. 6869. https://doi.org/10.3390/s21206869

Verdon J.P., Horne S.A., Clarke A., Stork A.L., Baird A.F., Kendall J.-M. Microseismic monitoring us-ing a fibre-optic distributed acoustic sensor (DAS) array // Geophysics. 2020. V. 85. P.1–48. http://dx.doi.org/10.1190/geo2019-0752.1

Wagner A.M., Lindsey N.J., Dou S., Gelvin A., Saari S., Williams C., Ekblaw I., Ulrich C., Borglin S., Morales A., Ajo-Franklin J. Permafrost degradation and subsidence observations during a con-trolled warming experiment // Sci. Rep. 2018. V. 8. Art. 10908. https://doi.org/10.1038/s41598-018-29292-y

Walter F., Gräff D., Lindner F., Paitz P., Köpfli M., Chmiel M., Fichtner A. Distributed acoustic sens-ing of microseismic sources and wave propagation in glaciated terrain // Nat. Commun. 2020. V. 11. Art. 2436. https://doi.org/10.1038/s41467-020-15824-6

Wamriew D., Pevzner R., Maltsev E., Pissarenko D. Deep neural networks for detection and location of microseismic events and velocity model inversion from microseismic data acquired by distributed acoustic sensing array // Sensors. 2021. V. 21, Iss. 19. Art. 6627. https://doi.org/10.3390/s21196627

Wang H.F., Zeng X., Miller D.E., Fratta D., Feigl K.L., Thurber C.H., Mellors R.J. Ground motion re-sponse to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer ar-rays // Geophys. J. Int. 2018. V. 213, N 3. P.2020–2036. https://doi.org/10.1093/gji/ggy102

Wang Z.N., Zeng J.J., Li J., Fan M.Q., Wu H., Peng F., Zhang L., Zhou Y., Rao Y.J. Ultra-long phase-sensitive OTDR with hybrid distributed amplification // Opt. Lett. 2014. V. 39. P.5866–5869. https://doi.org/10.1364/OL.39.005866

Wang Z., Zheng H., Li L., Liang J., Wang X., Lu B., Ye Q., Qu R., Cai H. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network // Opt. Ex-press. 2019. V. 27. P.23682–23692. https://doi.org/10.1364/OE.27.023682

Wang Z., Lu B., Ye Q., Cai H. Recent progress in distributed fiber acoustic sensing with Φ-OTDR // Sensors. 2020. V. 20, Iss. 22. Art. 6594. https://doi.org/10.3390/s20226594

Wu H., Yang M., Yang S., Lu H., Wang C., Rao Y. A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network // IEEE Access. 2020. V. 8. P.119448–119457. https://doi.org/10.1109/ACCESS.2020.3004207

Wu Y., Richter P., Hull R., Farhadiroushan M. Hydraulic frac-hit corridor (FHC) monitoring and analysis with high-resolution distributed acoustic sensing (DAS) and far-field strain (FFS) mea-surements // First Break. 2020. V. 38. P.65–70. https://doi.org/10.3997/1365-2397.fb2020045

Wuestefeld A., Weinzierl W. Design considerations for using distributed acoustic sensing for cross-well seismics: A case study for CO2 storage // Geophys. Prospect. 2020. V. 68. P.1893–1905. https://doi.org/10.1111/1365-2478.12965

Xiong J., Wang Z., Wu Y., Rao Y. Single-Shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing // J. Lightwave Tech. 2020. V. 38, N 7. P.2028–2036. https://doi.org/10.1109/JLT.2020.2968632

Xue Y., Niu Y., Gong S. External modulation optical coherent domain reflectometry with long mea-surement range // Sensors. 2021. V. 21, Iss. 16. Art. 5510. https://doi.org/10.3390/s21165510

Yu C., Zhan Z., Lindsey N.J., Ajo-Franklin J.B., Robertson M. The potential of DAS in teleseismic studies: Insights from the Goldstone experiment // Geophys. Res. Lett. 2019. V. 46, N 3. P.1320–1328. https://doi.org/10.1029/2018GL081195

Yuan Q., Chai J., Zhang Y., Liu Y., Ren Y. Investigation of deformation pattern and movement law of the huge-thick conglomerate stratum by a large-scale 3D model test with distributed optical fiber sensor monitoring // Sensors. 2021. V. 21, Iss. 17. Art. 5985. https://doi.org/10.3390/s21175985

Yuan S., Lellouch A., Clapp R.G., Biondi B. Near-surface characterization using a roadside distributed acoustic sensing array // Lead. Edge. 2020. V. 39. P.646–653. http://dx.doi.org/10.1190/tle39090646.1

Zhang C.-C., Shi B., Zhu H.-H., Wang B.-J., Wei G.-Q. Toward distributed fiber-optic sensing of subsurface deformation: A theoretical quantification of ground-borehole- cable interaction // J. Geophys. Res.: Solid Earth. 2020. V. 125, N 3. Art. e2019JB018878. https://doi.org/10.1029/2019JB018878

Zhang C.C., Shi B., Zhang S., Gu K., Liu S.-P., Gong X.-L., Wei G.-Q. Microanchored borehole fiber optics allows strain profiling of the shallow subsurface // Sci. Rep. 2021. V. 11. Art. 9173. https://doi.org/10.1038/s41598-021-88526-8

Zhang J., Zheng H., Zhu T., Yin G., Liu M., Bai Y., Qu D., Qiu F., Huang X. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling // Opt. Lett. 2018. V. 43. P.2022–2025. https://doi.org/10.1364/OL.43.002022

Zhang Y., Liu J., Xiong F., Zhang X., Chen X., Ding Z., Zheng Y., Wang F., Chen M. A space-division multiplexing method for fading noise suppression in the Φ-OTDR system // Sensors. 2021. V. 21, Iss. 5. Art. 1694. https://doi.org/10.3390/s21051694

Zhang Z., Fang Z., Stefani J., DiSiena J., Bevc D., Ning I.L.C., Hughes K., Tan Y. Modeling of fiber-optic strain responses to hydraulic fracturing // Geophysics. 2020. V. 85. P.A45–A50. http://dx.doi.org/10.1190/geo2020-0083.1

Zhou D.-P., Li W., Chen L., Bao X. Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber // Sensors. 2013. V. 13, Iss. 2. P.1836–1845. https://doi.org/10.3390/s130201836

Zhou D.-P., Chen L., Bao X. Distributed dynamic strain measurement using optical frequency-domain reflectometry // Appl. Optics. 2016. V. 55, N 24. P.6735–6739. https://doi.org/10.1364/AO.55.006735