Наука и технологические разработки: статья

Обзор применения легких беспилотных воздушных судов в геолого-геофизических исследованиях
И.М. АЛЕШИН
С.Д. ИВАНОВ
В.Н. КОРЯГИН
М.А. МАТВЕЕВ
Ю.А. МОРОЗОВ
Ф.В. ПЕРЕДЕРИН
К.И. ХОЛОДКОВ
Институт физики Земли им. О.Ю. Шмидта РАН
Журнал: Наука и технологические разработки
Том: 98
Номер: 3
Год: 2019
Страницы: 5-19
УДК: 550.8 + 629.735
DOI: 10.21455/std2019.3-1
Ключевые слова: БВС, БПЛА, изучение зоны землетрясения, структурная геология, палеосейсмология, геомагнитная съемка, геологоразведка
Аннотация: В статье рассматривается возможность использования максимально универсальной беспилотной летательной платформы для проведения широкого класса геолого-геофизических исследований. Рассматриваются различные виды легких беспилотных воздушных судов и оборудования для них. В качестве иллюстрации описан пример использования мультикоптера при проведении полевых геологических исследований. Предложены рекомендации по выбору БВС и бортового оборудования.
Список литературы: Беспилотные летательные аппараты - Описания и технические характеристики беспилотников. https://bp-la.ru/

Батоцыренов Э.А., Бешенцев А.Н. Использование БПЛА в географических исследованиях // Материалы Всероссийской научно-практической конференции 22-23 мая 2018 г. Иркутск. C.20-23.

Правила учета беспилотных гражданских воздушных судов с максимальной взлетной массой от 0.25 килограмма до 30 килограммов, ввезенных в Российскую Федерацию или произведенных в Российской Федерации (утверждены Постановлением Правительства РФ № 658 от 25 мая 2019 г.).

Проект классификации беспилотных авиационных систем; предложен Ассоциацией “АЭРОНЕТ” и одобрен в Росавиации. 2018. https://aeronet.aero/news/091728

Фетисов В.С., Неугодникова Л.М., Адамовский В.В., Красноперов Р.А. Беспилотная авиация. Терминология, классификация, современное состояние / Под ред. В.С. Фетисова. Уфа: ФОТОН, 2014. ISBN: 978-5-9903144-3-6

Фирсов А.П., Злыгостев И.Н., Дядьков П.Г., Савлук А.В., Вайсман П.А., Вальд А.К., Шеремет А.С., Евменов Н.Д. Применение высокочастотного магнитометра для лёгких БПЛА при геолого-геофизическом изучении трубок взрыва // Интерэкспо Гео-Сибирь. 2015а. Т. 2, № 2. С.299-304.

Фирсов А.П., Злыгостев И.Н., Савлук А.В., Вайсман П.А., Вальд А.К., Дядьков П.Г., Колесов А.С., Шеремет А.С. Применение беспилотных летательных аппаратов при геолого-геофизическом картировании // Материалы V Всероссийской научно-практической конференции “Геология и минерально-сырьевые ресурсы северо-востока России”, 31 марта - 2 апреля 2015 г. Новосибирск, 2015б. С.529-533.

Черкасов С.В., Стерлигов Б.В., Золотая Л.А. О возможности использования беспилотных летательных аппаратов для производства высокоточных измерений аномалий магнитного поля Земли // Вестник Московского университета. Серия 4. Геология. 2016. № 3. C.17-20.

Adams S.M., Levitan M.L., Friedland C.J. High Resolution Imagery Collection Utilizing Unmanned Aerial Vehicles (UAVs) for Post-Disaster Studies // Advances in Hurricane Engineering, 2013. P.777-793. DOI: 10.1061/9780784412626.067

Beagle Bone Black. https://beagleboard.org/black

Bemis S., Micklethwaite S., Turner D., James M.R., Akciz S., Thiele S., Bangash H.A. Ground-based and UAV-based photogrammetry: A multi-scale, high resolution mapping tool for structural geology and paleoseismology // J. Struct. Geol. 2014. V. 69. P.163-178.

Booysen R., Zimmermann R., Lorenz S., Gloaguen R., Andreani L., Nex P.A.M. A multi-scale remote sensing approach for mineral exploration: An example from the Lofdal carbonatite-hosted REE deposit, Namibia // Geophys. Res. Abstracts. 2019. V. 21. P. EGU2019-14228.

Cunningham M. Aeromagnetic surveying with unmanned aircraft systems. Thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment for the degree of Master of Science in Earth Sciences. Carleton University Ottawa, Ontario, 2016.

Cunningham M., Samson C., Wood A., Cook I. Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada // Pure and Appl. Geophys. 2018. V. 175. P.3145-3158. doi: 10.1007/s00024-017-1736-2

Donohue V. Identification of UAV Platforms and Payloads for Mineral Exploration and Applications in the Oil and Gas Industry // Int. J. of Unmanned Systems Engineering. 2014. V. 2, N 3. P.61-69. DOI: 10.14323/ijuseng.2014.12

Fiolleau S., Borgniet L., Jongmans D., Bievre G., Chambon G. Using UAV’s imagery and LiDAR to accurately monitor Harmaliere (France) landslide evolution // Geophys. Res. Abstracts. 2019. V. 21. P.EGU2019-10275.

Hong Z., Tong X., Cao W., Jiang S., Chen P., Liu S. Rapid three-dimensional detection approach for building damage due to earthquakes by the use of parallel processing of unmanned aerial vehicle imagery // J. Appl. Remote Sensing. 2015. V. 9, N 1. P.1-18. DOI: 10.1117/1.JRS.9.097292

Johnson K., Nissen E., Saripalli S., Arrowsmith J.R., McGarey P., Scharer K., Williams P., Blisniuk K. Rapid mapping of ultrafine fault zone topography with structure from motion // Geosphere. 2014. Vol. 10, N 5. P. 969-986.

Kamilaris A., Prenafeta-Boldú F.X. Disaster monitoring using unmanned aerial vehicles and deep learning // arXiv preprint arXiv:1807.11805.2018.

Kiyavash P. Development and Evaluation of Unmanned Aerial Vehicle (UAV) Magnetometry Systems: A thesis submitted to the Department of Geological Sciences and Geological Engineering. In conformity with the requirements for the degree of Master of Applied Science, Queen’s University, Kingston, Ontario, Canada, 2016.

Koyama T., Kaneko T., Ohminato T., Yanagisawa T., Watanabe A., Takeo M. An aeromagnetic survey of Shinmoe-dake volcano, Kirishima, Japan, after the 2011 eruption using an unmanned autonomous helicopter // Earth, Planets and Space. 2013. V. 65, N 6. P.16.

Li C., Zhang G., Lei T., Gong A. Quick image-processing method of UAV without control points data in earthquake disaster area // Transactions of Nonferrous Metals Society of China. 2011. V. 21. P.523-528. DOI: 10.1016/S1003-6326(12)61635-5

Lin J., Tao H., Wang Y., Huang Z. Practical application of unmanned aerial vehicles for mountain hazards survey // 18th International Conference on Geoinformatics. 2010. P.1-5. DOI: 10.1109/GEOINFORMATICS.2010.5567777

Madriz Y., Jackisch R., Zimmermann R., Gloaguen R. UAS aeromagnetic survey for mineral exploration using a fluxgate triaxial magnetometer // Geophys. Res. Abstracts. 2019. V. 21. P.EGU2019-14812.

Martin P.G., Payton O.D., Fardoulis J.S., Richards D.A., Scott T.B. The use of unmanned aerial systems for the mapping of legacy uranium mines // J. Environmental Radioactivity. 2015. V. 143. P.135-140. DOI: 10.1016/j.jenvrad.2015.02.004

Merlaud A., Tack F., Constantin D., Fayt C., Maes J., Mingireanu F., Mocanu I., Georgescu L., Van Roozendael M. Small Whiskbroom Imager for atmospheric composition monitoring (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign // Geophys. Res. Abstracts. 2015. V. 17.

MULSEDRO - Multi-Sensor Drones. Geological Survey of Denmark and Greenland (GEUS). https://www.isaaffik.org/mulsedro-multi-sensor-drones

Pajares G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs) // Photogrammetric Engineering & Remote Sensing. 2015. V. 81, N 4. P.281-330. DOI: 10.14358/PERS.81.4.281.

Parvar K., Braun A., Layton-Matthews D., Burns M. UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman // J. Unmanned Vehicle Systems. 2018. V. 6, N 1. P.57-69. DOI: 10.1139/juvs-2017-0015

Raspberry Pi 4. https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Raspberry Pi Zero. https://www.raspberrypi.org/products/raspberry-pi-zero/

Rathinam S., Kim Z., Soghikian A., Sengupta R. Vision Based Following of Locally Linear Structures using an Unmanned Aerial Vehicle // Proceedings of the 44th IEEE Conference on Decision and Control. 2005. P.6085-6090. DOI: 10.1109/CDC.2005.1583135

Phantom 4 Advanced. https://www.dji.com/ru/phantom-4-adv

Reitman N.G., Bennett S.E., Gold R.D., Briggs R.W., DuRoss C.B. High Resolution Trench Photomosaics from Image Based Modeling: Workflow and Error Analysis // Bull. Seism. Soc. Amer. 2015. V. 105. P.2354-2366.

Schneiderwind S., Kázmér M., Boulton S., Papanikolaou I., Stewart I., Reicherter K. The geometry of tidal notches - What do they reveal about coastal tectonics? // 7th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA). 30 May - 3 June, 2016, Crestone, Colorado, USA.

Sevieri G., Di Stasio S., O'Sullivan K., Galasso C. The CHeRiSH project: towards a multilevel, multi-hazard risk assessment framework for cultural heritage assets in the Philippines // Atti del XVIII Convegno ANIDIS L'ingegneria Sismica in Italia: Ascoli Piceno. 2019. P.119-130.

Sterligov B., Cherkasov S. Reducing Magnetic Noise of an Unmanned Aerial Vehicle for High-Quality Magnetic Surveys // Int. J. Geophys. 2016. V. 2016. P.7.

Sutinen R., Hyv€onen E., Middleton M., Ruskeeniemi T. Airborne LiDAR detection of postglacial faults and Puljumoraine Palojarvi, Finnish Lapland // Global and Planetary Change. 2014. V. 115. P.24-32.

Teunissen P., Montenbruck O. (eds.). Springer handbook of global navigation satellite systems. Springer, 2017.

Tsirel V., Parshin A., Ancev V., Kapshtan D. Unmanned Airborne Magnetic Survey Technologies: Present and Future // Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism. Cham: Springer International Publishing, 2019. P.523-534. DOI: 10.1007/978-3-319-90437-5_36

Tuck L., Samson C., Polowick C., Laliberte J. Real-time compensation of magnetic data acquired by a single-rotor unmanned aircraft system // Geophysical Prospecting. 2019. V. 67, N 6. P.1637-1651. DOI: 0.1111/1365-2478.12800

Turner D., Lucieer A., Watson C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds // Remote Sensing. 2012. V. 4, N 5. P.1392-1410. DOI: 10.3390/ rs4051392

Villa T.F., Gonzalez F., Miljievic B., Ristovski Z.D., Morawska L. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives // Sensors. 2016. V. 16, N 7. P.1072. DOI: 10.3390/s16071072

Watts A.C., Ambrosia V.G. Hinkley E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use // Remote Sensing. 2012. V. 4, N 6. P.1671-1692.

Wechsler N., Katz O., Mushkin A. On the accuracy of topographic models derived from UAV photography // 7th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 30 May - 3 June, 2016, Crestone, Colorado, USA.

Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications // Geomorphology. 2012. V. 179. P.300-314.