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Analysis of hidden periodicity of seismic records for Western part of Himalaya indicates a well
defined precursors for the 29 March 1999 Chamoli earthquake of M,,=6.6 and for 19 October 1991
Uttarkashi earthquake, M,=6.4, as statistically significant increasing of periodic component of
main-shocks’ sequence intensity estimated within moving time window of the length 4 years. The
detailed analysis of new compiled seismic catalogue of the study region for a period of 1552 to
2004 highlight the importance of significant role of smaller magnitude earthquake for precursory
study.
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Introduction

Himalaya is the youngest mountain belt having complex geological setup, active tec-
tonic discontinuities and zones of variable seismic density. The western part of Himalaya has
experienced the catastrophe due to big Kangra earthquake of 1905 and the recently occurred
M 7.8 Muzzafrabad earthquake of October 8, 2005. The Muzzafrabad earthquake (epicenter
73.5°E, 34.3°N) occurred to the north-west of our study region (74°E—82°E, 28°N-34°N) and
therefore we are not able to analyze the precursor of this earthquake using the present cata-
logue for this methodology. The information of destruction due to historical earthquake is not
available but it is clear from Fig. 1(a) that the region has experienced about 8 earthquakes
having magnitude more than 7.0, while the reported earthquakes number of more than 6.0
magnitude is about 50.

In the eastern part of the study region two big earthquakes are happened during the in-
strumental records of the seismic events. The Chamoli earthquake occurred on March 28,
1991 having M 6.8 and epicenter while the Uttarkashi earthquake occurred on October 19,
1991 of 6.6 magnitude.

Geotectonic information

Himalaya is formed due to the continent-continent collision of Indian and Eurasian
plates. The Indian plate is moving to the NNE direction and under thrusting with SSW mov-
ing Eurasian plate. The collision has started about 50 m.y. ago resulting the formation of high
mountain belts extending to east-west direction for 2400 km with deformation of lithosphere
with variable degree. It has resulted the complex geological setup from protorezoic to Quater-
nary age, the different tectonic discontinuities with increasing age from south to north and the
occurrence of big earthquakes to recent age and release of increased stress due to occurrence
of seismic events. The faults are of thrust, normal, strike slip. The thrust faults are extended
for long length with east-west strike parallel along the mountain belt of Himalaya, dipping to
the north from 5° to 15°. The normal and strike slip faults are mainly perpendicular to the
thrust and the mountain belts and are of less length. These faults are dipping with variable de-
gree.
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Fig. 1. Sequence of magnitudes values for different time intervals. Bold horizontal lines give statisti-
cally significant lower magnitude values
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Seismic catalogue

The Fig. 1 presents a distribution of magnitudes values of seismic events in dependence
on time. The catalog has 2 change points of essential increasing its quality: 1963 and 1999 —
this could easily be noticed from the Fig. 1. The Fig. 2 presents empirical cumulative histo-
grams for 2 time interval: 1963-2005 and 1999-2005. The value of argument for which the
empirical distribution function has a straight line behavior till the maximum observed magni-
tudes gives statistically significant minimum value of magnitude: for 1963—005 intervals it
equals 4.5 whereas for time interval 1999-2005 it equals 2.5.

Empirical cumulative histograms: Prob { Magnitude > X }
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Fig. 2. Empirical functions of distribution of magnitudes values for periods 1963-2005 and 1999—
2005. The values M, are statistically significant values of lower magnitude. Bold grey lines give best
fit for magnitude values exceeding M,

The Fig. 3 presents spatial distribution of earthquakes epicenters for all events within
catalog and for events belonging to time interval 1963-2005 and having magnitudes not less
than 4.5. Besides that Fig. 3(b) presents partition of the region into 2 polygonal parts: northern
Q1 and southern Q2.

For further analysis it is necessary to exclude aftershocks. For this purpose the simplest
method [Gardner, Knopoff, 1974] was used. The advantage of this method is that it is casual,
i.e. does not use the future information for decision whether the considered event is main-
shock or aftershock. This property is important for applications to earthquake prediction. Let
t;, M, be the origin time and the magnitude of the mainshock. The seismic event #,, M, is

considered its aftershock and removed from the catalog if it satisfies the criteria of M, <M,
t,<t, <t,+7(M,) and the distance p, between epicenters of events j and k obeys the con-
dition of p, <r(M;). Here 7(M)=1,-10"""" and r(M)=r,-10"""  Following
[Gardner, Knopoff, 1974] we used My=4, 7,=30 days, 7,=10 km, a=b=0.5. The 1% event in
the catalog is regarded as a mainshok.
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Fig. 3. (a) Distribution of epicenters for all events from historical to 2005; (b) Distribution of epicen-

ters for time interval 1963-2005 for magnitudes >4.5, seismically active region is split into 2 parts (Q1
and Q2)

The next step of our investigation will be seeking for periodic components of main
shocks intensity in the domains Q1 and Q2 for magnitudes > 4.5.

Analysis of hidden periodicities within sequences of mainshocks

The method was proposed at the paper [Lyubushin et al., 1998] and is intended for de-
tecting periodic components within flow of events.
Let

t,i=1,.,N (1)

1

be a sequence of the time moments of occurrence of events that is observed within a time in-
terval of (0, 7). Let us consider the following model of seismic intensity which has a periodic
component:

A(t) = u(1+acos(wt + @)), (2)

where the frequency o, amplitude a, 0<a <1, phase angle ¢, @ €[0,27] and multiplier

1 >0 (which describe a Poissonian part of seismic process intensity) are parameters of the

model to be identified. Thus, the Poissonian part of intensity is modulated by harmonic oscil-
lation.

Let us fix some value of @ for which the Logarithmic likelihood function [Cox, Lewis,
1966] for the set of observations is equal to:

InL(u,a,9 | @) = Y In(A(t,)) T/"i(S)dS =
° )
= Nln(u)+ ZIn(l +acos(awt, + @) — ul — ﬂ[sin(a)T + @) —sin(@)].
t; @

i

Taking maximum value of (3) with respect to x4, we can easily find
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o ) N
A= iaplo)= T +a(sin(@T + @) —sin(p))/ @ ®

Substituting (4) into formula (3) we will have:

In(L(&,a,¢ | w)) = ZIn(l +acos(at, +¢))+ NIn(f(a,p|®))— N . (5)

It should be noted that f(a =0,¢|w)= i, =N/T is the estimate of the uniform Poissonian

(pure random) part of intensity.

Thus, the increment of log-likelihood function due to introduction of the harmonic os-
cillation with given frequency value @ into the model of intensity with respect to zero hy-
pothesis that seismic process is uniform pure random (Poissonian) equals:

AlnL(a,p|w) = ZIn(l +acos(at, + @)+ NIn(fi(a,p | @)/ f1) . (6)

Let
R(w)=maxAlnL(a,p|w), 0<a<l, ¢<[0,27], (7)
a.p

The function (7) could be regarded as the generalization of the spectra for the sequence
of events. The graphic of this function indicates which probe values of the frequency provide
the maximum gain in log-likelihood function increment with respect to a pure random model.
Thus, the points of maximum of the function (7) detect periodic components of the seismic
process.

The next generalization of this approach is estimating the function (7) not over the
whole time interval of observation (0, 7) but within moving time window of certain length
T, . Let 7 be a time coordinate of the right-hand end of the moving time window. Then we

have the function of 2 arguments: R(w,7|7,,) which could be visualized as 2D map within

the plane of (w,7)-values. The time-frequency diagrams allow describe the dynamics of peri-
odic component within seismic process.

This time-frequency diagram allows to investigate the dynamics of occurring and de-
velopment of periodic components within considered flow of events [Lyubushin, 2002; Sobo-
lev, 2003].

For estimating statistical significance of the peaks of function (7) we can apply Wilks’
theory [Rao, 1965; Lyubushin et al., 1998] according to which in particular case of the model
(2) in case when sequence of moment is pure random (Poissonian) an asymptotic relation for
distribution probability function of (7) takes place:

Pr{R(w)<X}=1-e"*, N->wo. (8)

From formula (8) it follows that 90% probability threshold equals 2.3. Thus, if the peak
values of (7) exceed the threshold 2.3 it means that we can regard these peaks as evidence for
existing periodic component with probability not less that 0.9.

Results

Figures 4 and 5 present time-frequency diagrams of log-likelihood increments evolution
within moving time window of length 1461 days (4 years) taking with mutual shift of 25 days
for domains QI and Q2. For each diagram a corresponding sequence of mainshock is pre-
sented by a stick, whose length is proportional to the magnitude of the event. The time marks
on the diagrams represent the right-hand coordinate of the moving time windows.
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Fig. 4. Evolution of the increment of log-likelihood function for mainshocks in the domain Q1 within
moving time window of the length 1461 days (4 years)
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Fig. 5. Evolution of the increment of log-likelihood functions for mainshocks in the domain Q2 within
moving time window of the length 1461 days (4 years)
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The main difference between Fig. 4 and 5 consists in existing periodic components of
intensity on the large periods (more than 1000 days) for the domain Q2. Domain Q2 contains
two strong earthquakes, the first one is the Uttarkashi earthquake of October 19, 1991, M=6.6
with epicenter 30.77°N, 78.79°E and the second is the Chamoli earthquake of March 28, 999,
M=6.8, 30.41°N, 79.42°E. For both theses earthquakes we noticed a significant increase in
the periodic component of intensity for time windows having right-hand end approximately
0.5 year before the main shock. Domain Q1 (Fig. 4) has no long-periodic components of
mainshocks sequence. This could be a consequence of absence of strong earthquakes in the
domain Q1. Both diagrams have a number of peaks with periods less than 500 days but they
reflect a stochastic structure of seismic process and it is difficult correspond them to any
events directly.

The physical mechanisms for arising phenomena of increasing long-periodic component
within seismic process before strong earthquakes is discussed in [Sobolev, 2003] and it could

reflect the processes of consolidation of Earth’s crust within the epicentral area of future
shock.

Conclusion

The analysis of thin time-frequency spectral structure of main-shocks sequences using
new method of detecting hidden periodicity within point processes allows detect precursory
phenomena in the seismicity of Western Himalaya before the strongest earthquakes. This
phenomena consists in increasing periodic component of intensity approximately 0.5 years
before the shock on periods more than 1000 days.
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HUCCJIEJTOBAHUE CEMCMUYHOCTH 3AIIATHBIX THMAJIAEB
A.A. Jlio6ymun', B.P. Apopa’, H. Kymap®
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2 Hnemumym eeonoeuu I'umanaes um. Baoua, Jlexpaoyn, Hnous

Annotanus. [To pe3ynbraram aHanm3a ceiiCMHUUECKOTO Katajora 3anaaHeix [ mManaes, BBIMOJTHEHHOTO C LEJIbIO
00Hapy)KEHHSI CKPBITHIX NEPUOANIHOCTEH, BBIJIETICHBI ITPEABECTHUKN 3eMieTpsicennii Yamomm 29 mapra 1999 r.
(M=6.6) u Yrrapkamm 19 oxtsiops 1991 r. (M=6.4) — pu OLEHKE B CKOJB3SIIEM BPEMEHHOM OKHE UTMHOM
4 roga MPOCIISKEHO 3HAYNMOE YBEIHUCHNE MEPHOANIECKOW KOMIIOHEHTHI MHTEHCHBHOCTH TJIABHBIX TOIYKOB.
JleranbHbIi aHATN3 HOBBIX JaHHBIX, MOJTYYEHHBIX KOMIMJIMPOBAaHWEM Pa3HbIX KaTAJIOTOB, NMOJUYEPKUBACT BaXK-
HOCTb JJIS TPOTHO32 3eMJIETPSICEHNH PETHCTPAIiU 3eMIIETPSICEHNI MaJlOi MarHUTYJIBI.

KuaroueBble cjioBa: ceiicMuueckas WHTCHCUBHOCTD, IEPUOAUIHOCTD, ITPECABECTHUKH.
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