ОТЗЫВ

официального оппонента на диссертационную работу Попова Евгения Юрьевича

«Развитие экспериментальной базы тепловой петрофизики для изучения пород месторождений с трудноизвлекаемыми и нетрадиционными запасами углеводородов»

по специальности **25.00.10** «Геофизика, геофизические методы поисков полезных ископаемых» на соискание ученой степени кандидата технических наук

Актуальность темы

В настоящее время в нашей стране и в мире происходит существенное изменение структуры запасов нефти и газа, все большую их долю правомерно относят к трудноизвлекаемым. В качестве таковых автор диссертации справедливо упоминает породы баженовской свиты и доманиковой формации. Интерес в оценке перспектив данных отложений со стороны добывающих нефтяных компаний – правомерен и оправдан. Приступая к промышленной эксплуатации подобного класса запасов, предстоит существенно модернизировать систему разработки. Ведущую роль в ней переходит к скважинам со сложным заканчиванием: горизонтальных, в том числе с множественным ГРП, многоствольных. Мы сталкиваемся с крайне сложными условиями проведения исследований: нестабильными многофазными притоками крайне низкой интенсивности. В подобных условиях существенно повышаются требования к результативности контроля разработки. Опыт оппонента по изучению таких объектов свидетельствуют, что при существенном падении информативности традиционных методов определения профилей притока и приёмистости в число ведущих методов для количественной оценки добывающих возможностей скважин выходит нестационарная термометрия. На совершенствование методической базы и технологического обеспечения этого метода (в том числе создания более совершенных термогидродинамических моделей) сейчас направлены серьезные усилия как ученых исследовательских организаций, так и специалистов инженерных служб, работающих в области добычи углеводородов. Успех количественной интерпретации результатов термических исследований во многом зависит от качества петрофизических данных, в первую очередь о тепловых свойствах нефтеносных коллекторов и вмещающих отложений. Важны как оценки тепловых свойств в естественном залегании, так и детальный анализ керна. В этой связи актуальность рецензируемой диссертационной работы, направленной на разработку метода неразрушающего непрерывного профилирования тепловых свойств на всем полноразмерном керне скважин, не вызывает сомнения.

Цель и задачи исследований

Диссертация включает введение, 5 глав и заключение, содержит 256 страниц текста, 102 рисунка, 18 таблиц и список литературы из 184 наименований. Текст работы написан грамотным языком и характеризует автора, как квалифицированного специалиста.

Первая глава посвящена литературному обзору отечественных и зарубежных источников, посвященных современному состоянию аппаратурнометодического обеспечения тепловой петрофизики. Автор обращает особое внимание на важность эксперимента в развитии данного направления, а также на актуальность и практическую значимость усилий, направленных на совершенствование аппаратурно-методической базы экспериментальных исследований.

По материалам главы обоснованы актуальные направления исследований, определившие задачи диссертационной работы, в том числе: создание метода непрерывного профилирования тепловых свойств керна, разработка аппаратуры оптического сканирования, организация массовых измерений комплекса тепловых свойств горных пород для решения практических задач нефтяной и газовой отрасли.

В основе содержания второй главы – решение задач по развитию теоретических и экспериментальных основ метода оптического сканирования.

Среди описанных в данной главе результатов на наш взгляд следует прежде всего выделить предложенные решения, направленные на снижение негативного воздействия на результаты измерений факторов- помех (вариаций оптических характеристик образцов пород, негативного воздействия на структуру порового пространства аномального прогрева, специальная подготовка образцов керна и пр.)

Важно также и то, что автором фактически выполнен анализ информативности предложенных методов измерений в условиях негативного влияния факторов-помех с обоснованием точности количественных определений тепловых свойств для конкретных условий проведения исследований.

Предложенные подходы к проведению исследований явились основой нового поколения аппаратурного обеспечения для оптического сканирования образцов керна, описанию которого посвящена *третья глава*.

Значительная часть содержания данной главы посвящена описанию подходов и результатам исследований образцов горных пород для сложных в геологическом отношении объектов добычи углеводородов (прежде всего речь идет, конечно, об отложениях баженовской свиты и доманиковой формации).

Данная тема находит дальнейшее продолжение в *четвертой главе*, посвященной новому методу непрерывного оптического профилирования тепловых свойств пород на керне. Важно, что автор не ограничился описанием полученных при исследованиях керна количественных результатов, а попытался связать их с другими петрофизическими характеристиками горных пород. Это ценно прежде всего предпосылками прогноза тепловых свойств по данным комплексных промыслово-геофизических исследований, в первую очередь ГИС открытого ствола.

И наконец иятая, заключительная глава продолжает развитие описанных выше подходов и отличается описанием большого объема экспериментов на керне. Это позволяет обосновать базовые петрофизические связи тепловых свойств с компонентным составом вещества коллектора (прежде всего, содержания органического вещества) с параметрами количественной интерпретации результатов ГИС, характеризующими дать диапазонные оценки определяемых параметров для рассматриваемых типов отложений.

Основные положения диссертации с достаточной полнотой отражены в автореферате, а также в подготовленных как им лично, так и с его участием в 10 отечественных научных статьях в журналах из списка ВАК, 4 статьях в зарубежных журналах, индексируемых в базах Web of Science и SCOPUS, 7 расширенных тезисах докладов в сборниках трудов конференций EAGE, ARMA и ISRM, индексируемых в базе SCOPUS, 2 патентах РФ.

Научная новизна, обоснованность и достоверность научных положений, выводов и итоговых рекомендаций

Для обоснования информативности предлагаемых автором диссертационной работы новых и усовершенствованных способов исследований образцов керна методов оптического сканирования и оценки результативности работы нового лабораторного оборудования автором выполнен существенный объем экспериментов на образцах керна по более чем четырем десяткам скважин на 30 месторождениях России, что безусловно вызывает доверие к полученным результатам. Приведенные в диссертации результаты анализа и обобщения полученных данных (в том числе зависимости, обосновывающие размеры и геометрию зон зондирования, погрешность измерения базовых тепловых свойств и пр.) убеждают в высокой степени обоснованности полученных результатов.

Следует согласиться с автором в определении новизны полученных результатов и дополнительно по характеристике новизны указать следующее.

1. Выполненное автором обоснование оптимальных параметров режима измерений, а также предложенные оригинальные способы подготовки образцов к измерениям (при которых образцы керна подвергаются суще-

- ственно меньшему термомеханическому воздействию) позволили существенно повысить качество измерений методов оптического сканирования и сохранность испытуемых образцов.
- 2. В рамках решения задачи по увеличению результативности лабораторных исследований разработаны новые элементы оборудования, в том числе:
 - автономный лазерный модуль оптического сканирования для комплексирования высокоразрешающего непрерывного теплофизического профилирования полноразмерного керна с механическим скретч-тестированием и профильными гамма-спектрометрическими исследованиями полноразмерного керна;
 - мобильная лазерная установка оптического сканирования для измерений тепловых свойств пород на стандартных образцах пород, мелких фрагментах керна и синтетических образцах, используемых при исследованиях шлама.
- 3. Разработан метод изучения трещиноватости пород путем анализа вариаций главных значений тензора теплопроводности и коэффициента тепловой анизотропии при сочетании измерений на сухих и флюидонасыщенных образцах.
- 4. Разработан метод непрерывного бесконтактного высокоразрешающего теплофизического профилирования керна скважин и предложены подходы к комплексной обработке полученных результатов с материалами геофизических исследований скважин.
- 5. Разработан метод определения общего содержания органического вещества в породах баженовской свиты и доманиковой формации и регистрации его детальных пространственных вариаций вдоль скважин на основе профилирования теплопроводности на керне.
- 6. Разработаны методы экспериментального определения тепловых свойств минеральной матрицы пород при сочетании данных исследований стандартных образцов пород, результатов непрерывного профилирования тепловых свойств на керне и материалов ГИС.

7. Получен большой объем новых представительных данных о диапазоне изменения и характерных значениях тепловых свойствах пород баженовской свиты и доманиковой формации, включая степень анизотропии и разномасштабной неоднородности пород.

Объем и структура информации, характеризующую научную новизну подтверждают обоснованность сформулированных в диссертационной работе защищаемых научных положений.

Важно подчеркнуть, что новизна полученных автором результатов подтверждена двумя патентами на изобретения.

Практическая значимость

При характеристике научной значимости полученных результатов на взгляд оппонента следует выделить два аспекта.

Первое: детальный анализ закономерностей формирования и релаксации температурных аномалий, связанных с термическим воздействием на горные породы в процессе проведения лабораторных тестов, позволили существенно модернизировать методическое и технологическое обеспечение тепловой петрофизики.

Второе: обширный объем экспериментальных данных по тепловым свойствам горных пород, полученных на богатой коллекции образцов керна отложений баженовской свиты и доманиковой формации, позволит существенно повысить наше знание об этих новых и пока слабо изученных объектах.

Существенная практическая значимость результатов диссертации на наш взгляд состоит в возможности существенно повысить информативность количественных оценок параметров профиля притока и приемистости по результатам нестационарных и квазистационарных методов термических исследований скважин.

Конкретные рекомендации по использованию результатов и выводов диссертации

В связи со сказанным выше рекомендуется в последующем:

- Расширить объем экспериментальных исследований для оценки тепловых свойств горных пород и охват подобными работами максимального спектра сложнопостроенных коллекторов, которые могут быть резервуарами для трудноизвлекаемых запасов
- Использовать результаты массовых экспериментов для настройки программных модулей для моделирования температурных полей (так называемых термосимуляторов), что позволит, как более эффективно решать проблемы региональной геотермии, так и сугубо практические задачи по более качественной интерпретации результатов термических исследований при контроле разработки (в первую очередь количественной оценки профиля притока и приемистости в скважинах со сложным заканчиванием).

Достоинства и недостатки в содержании и оформлении диссертации

В целом диссертационная работа в целом оставляет очень хорошее впечатление. Это законченная работа, включающее грамотное обоснование постановки задачи и ее актуальности, глубокий анализ предшествующих результатов, на которых базируется выполненное исследование, подробное описание результатов, полученных автором и анализ их апробации.

К числу **недостатков диссертации**, которые скорее можно отнести к пожеланиям для дальнейшего исследования следует отнести следующее.

- 1. Не показан эффект от получения детальных данных по Усинскому месторождению на качество гидродинамического моделирования.
- 2. Не рассмотрены перспективы применения метода для измерений в скважинах.
- 3. Не раскрыты области применения данных нефтяными компаниями в рамках многочисленных совместных проектов.

- 4. Не очень удачным представляется использование понятия «сплошность».
- 5. Не на всех приведенных в работе рисунках вариациями свойств горной породы по глубине скважины приведены литологические колонки и даны легенды к ним, например, на стр.164, 169, 210 и некоторых других литологическая колонка отсутствует.

В последующем на наш взгляд следует уделить большее внимание петрофизическому обоснованию термометрии скважин, в том числе вопросам:

- Насколько велики контрасты изменения тепловых свойств горных пород для конкретных объектов геофизических исследований.
- В какой степени неопределенности в тепловых свойствах скажутся на точности оценки количественных параметров, характеризующих работу скважины и пласта (доля пластов в притоке и закачке, интенсивности межпластовых перетоков и пр.).

Кроме того, в последующем на наш взгляд необходимо обратить внимание на изучение тепловых свойств не только вмещающих горных пород, но и элементов конструкции скважины. Речь идет о цементном камне, изолирующем межколонное и заколонное пространства в добывающих и нагнетательных эксплуатационных скважинах. Находясь в непосредственной близости от потока флюида в стволе, эта среда оказывает преобладающее влияние на температурный режим действующей скважины.

Отмеченные недостатки носят рекомендательный характер, их следует учесть автору при проведении дальнейших исследований. В целом они не снижают общего положительного впечатления о работе.

Соответствие специальности

Рассматриваемая диссертация соответствует следующим пунктам паспорта специальности 25.00.10 (технические науки): п.16 использование геолого-геофизических данных для построения геологических моделей; п. 18 интегрированный анализ многомерной, многопараметровой и разнородной информации, включающей геофизические данные; п.19 измерительная техника, технологии, системы наблюдений и сбора геофизических данных; п.20 метрологические обеспечение петрофизических измерений; п.22 теоретическое и экспериментальное изучение связей петрофизических и физических свойств горных пород с результатами измерения геофизических полей; п. 24 контроль разработки месторождений полезных ископаемых по данным наземных и скважинных геофизических исследований.

Соответствие содержания автореферата содержанию диссертации

Автореферат полностью соответствует содержанию диссертации, а публикации автора отражают все положения, содержащиеся в диссертации.

Заключение

Диссертационная работа Попова Евгения Юрьевича на тему «Развитие экспериментальной базы тепловой петрофизики для изучения пород месторождений с трудноизвлекаемыми и нетрадиционными запасами углеводородов» представляет собой самостоятельную, завершенную научноисследовательскую работу, обладающую актуальностью и научной новизной. Достоверность результатов научного исследования, полученных соискателем, не вызывает сомнения. Основные положения и выводы обоснованы результатами практических исследований.

Автореферат полностью соответствует содержанию диссертации, а публикации автора отражают все положения, содержащиеся в диссертации.

Представленная к защите работа соответствует требованиям п. 9 «Положения о порядке присуждения ученых степеней», утвержденного постановлением Правительства Российской Федерации от 24.09.2013 г. № 842, для ученой степени кандидата наук, а ее автор Попов Евгений Юрьевич достоин присуждения искомой ученой степени кандидата технических наук по специальности 25.00.10 Геофизика, геофизические методы поисков полезных ископаемых.

Официальный оппонент

Профессор кафедры «Геофизических информационных систем», факультета Геологии и геофизики нефти и газа, Федерального государственного автономного образовательного учреждения высшего образования «Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина»,

доктор технических наук

(подпись)

Подпись

Начальник отдела кад

Кременецкий Михаил Израилевич

Почтовый адрес института: 119991, Москва, Ленинский проспект, д.65, корп.1.

Телефон: +7(499) 507 88 88 (рабочий) +7(915) 370 77 13(сотовый)

Адрес электронной почты: Kremenetskiymi@gmail.com

Я, Кременецкий Михаил Израилевич, даю согласие на включение моих персональных данных в документы, связанные с работой Диссертационного Совета, и их дальнейшую обработку.

10

РГУ нефти и газа (НИУ) имени И.М. Губкина Рег. № 2/1-1 от «2010».