на правах рукописи

Гончаров Алексей Алексеевич

ПРИМЕНЕНИЕ ПСЕВДОСЛУЧАЙНЫХ (ШУМОПОДОБНЫХ) СИГНАЛОВ ИСТОЧНИКА ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЭЛЕКТРОРАЗВЕДКИ И СЕЙСМОРАЗВЕДКИ

Специальность 1.6.9 «Геофизика»

ΑΒΤΟΡΕΦΕΡΑΤ

Диссертация на соискание ученой степени кандидата технических наук

Москва – 2025

Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего образования «Московский физико-технический институт (национальный исследовательский университет)» (МФТИ, Физтех).

Научный руководитель:	Алексеев Дмитрий Александрович —				
	кандидат физико-математических наук,				
	старший научный сотрудник лаборатории				
	скважинной, инженерной и разведочной				
	геофизики МФТИ; старший научный				
	сотрудник лаборатории физики				
	межгеосферных процессов Института				
	физики Земли им. О. Ю. Шмидта РАН.				
Официальные оппоненты:					
Ведущая организация:	Федеральное государственное бюджетное				
	учреждение науки Научная станция				
	Российской академии наук в г. Бишкеке				

Защита диссертации состоится **5 октября 2025 года в 14:00** на заседании диссертационного совета XX.X.XXX, созданного на базе Федерального государственного бюджетного учреждения науки Института физики Земли им. О.Ю. Шмидта Российской академии наук, по адресу: 123242, г. Москва, ул. Большая Грузинская, д. 10, стр. 1, конференц-зал.

С текстом диссертации можно ознакомиться в библиотеке ИФЗ РАН, а также на официальном сайте института: http://www.ifz.ru. Автореферат размещён на сайте Высшей аттестационной комиссии при Министерстве науки и высшего образования Российской Федерации: http://vak.ed.gov.ru, а также на сайте ИФЗ РАН.

Отзывы на автореферат, заверенные печатью организации, необходимо направлять в двух экземплярах по адресу: 123242, г. Москва, ул. Большая Грузинская, д. 10, стр. 1, ИФЗ РАН, учёному секретарю диссертационного совета, кандидату физико-математических наук Жосткову Руслану Александровичу.

Автореферат разослан «____» июнь 2025 года.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Эффективность применения геофизических методов при решении задач картирования многолетнемёрзлых пород в значительной степени определяется помехоустойчивостью систем регистрации и обработки данных. В настоящей работе рассмотрены подходы к снижению влияния нерегулярных шумов в морской импульсной электроразведке методом зондирования становлением поля (ЗС) и вибрационной сейсморазведке, применительно к условиям Арктического шельфа. В морском варианте ЗС используется режим накопления, эффективность традиционно которого ограничивается как характером возбуждения и приёма сигнала в буксируемых установках, так и невозможностью длительных наблюдений на одной точке. Использование псевдослучайных (шумоподобных) сигналов источника позволяет существенно повысить отношение сигнал/шум за счёт их широкополосных спектральных характеристик и статистических свойств, приближённых к белому шуму. Ранее было показано, что при равных условиях ШПС обеспечивают в 3-5 раз более эффективное подавление шумов по сравнению с традиционным накоплением, что особенно актуально в морской среде, где затухание сигнала в поздней стадии менее выражено.

наблюдаются Сходные ограничения И В вибрационной системах сейсморазведки, где традиционные частотно-модулированные свип-сигналы не всегда обеспечивают достаточное временное разрешение и устойчивость к Применение фоновому сейсмическому шуму. псевдослучайных последовательностей импульсов позволяет формировать возбуждающие сигналы с автокорреляционной функцией, приближённой к дельта-импульсу, обладающей узким основным лепестком и быстро затухающими боковыми. Это существенно улучшает выделение сейсмических отражений в условиях сложного волнового поля и высокой зашумленности, что имеет важное прикладное значение при инженерно-геофизических исследованиях, в том числе при мониторинге состояния мерзлоты под объектами капитального строительства. Учитывая широкий спектр полезных свойств псевдослучайных сигналов, целесообразным представляется дальнейшее развитие и адаптация данных подходов в составе импульсной электроразведки современных комплексов И вибрационной сейсморазведки, ориентированных на работу в арктических и урбанизированных районах.

Объект исследования. В качестве объекта исследования выступает помехозащищенность геофизических систем зондирования становлением поля и вибрационной сейсморазведки, основанных на применении псевдослучайных кодовых последовательностей в роли сигналов источника (управляющих свипсигналов). Исследование проводится на основе синтетических моделей, отражающих характерные геологические особенности Арктического шельфа России и грунтов оснований зданий и сооружений города Салехард (ЯНАО), а также экспериментально-зарегистрированных шумов, полученных в рамках геофизических работ в названных районах.

Цель исследования заключается в повышении эффективности помехоподавления в системах морской импульсной электроразведки и вибрационной сейсморазведки за счет применения возбуждающих свипсвигналов в форме псевдослучайных (шумоподобных) последовательностей (ПСП, ШПС).

Основные задачи

- Теоретическая оценка эффективности использования псевдослучайных последовательностей импульсов тока в системе малоглубинной морской электроразведки методом становлением поля на основе математического моделирования и доступных экспериментальных данных.
- Теоретическая оценка эффективности использования псевдослучайных последовательностей импульсов м еханической нагрузки в системах вибрационной сейсморазведки на основе математического моделирования и доступных экспериментальных данных
- Разработка алгоритмов и программного обеспечения для обработки данных импульсной электроразведки и вибрационной сейсморазведки, полученных в режиме псевдослучайных (шумоподобных) возбуждающих сигналов

Основные положения, выносимые на защиту

- Основные помехи, вносящие искажения в записи зондирования становлением поля, регистрируемые с использованием буксируемой диполь-дипольной электроразведочной установки в условиях шельфа моря Лаптевых, имеют частотный диапазон от сотых долей до первых единиц Гц.
- Использование псевдослучайных (шумоподобных) последовательностей импульсов тока В морской буксируемой системе малоглубинной импульсной электроразведки позволяет существенно улучшить помехоподавление И неискаженный расширить шумами диапазон переходной характеристики по сравнению с традиционно-используемым режимом накопления.
- Использование свип-сигналов, основанных на шумоподобных последовательностях импульсов механической нагрузки В системах вибрационной сейсморазведки позволяет улучшить подавление нескоррелированных волн-помех и повысить детальность получаемых сейсмограмм по сравнению с традиционно-используемыми свип-сигналами с линейной частотной модуляцией.

 Выбор конкретного вида псевдослучайного сигнала источника целесообразно осуществлять, исходя из минимизации отношения спектров шума и сигнала источника в целевом диапазоне частот на основе предварительного анализа свойств шума в районе работ.

В Методы исследований. основе работы лежит моделирование синтетических откликов среды с наложением экспериментально шума и последующим восстановлением импульсной зарегистрированного характеристики с использованием методов деконволюции и кросс-корреляции. Для решения задач использовались апробированные численные подходы: одномерное ЭМ-моделирование с применением преобразования Ханкеля [Кеу, 2009] и полноволновое моделирование сейсмических волн на основе уравнений Ламе в среде Devito. Это обеспечило реалистичное воспроизведение процессов, характерных для методов зондирования становлением поля и вибрационной сейсморазведки.

Расчёт синтетических кривых становления поля выполнялся с использованием модифицированной версии программы DIPOLE 1D, с учётом геоэлектрических условий шельфа моря Лаптевых и данных зондирования (рейс AMK-82). Помехоустойчивость ШПС в морской системе ЗСБ оценивалась путём свёртки псевдослучайных сигналов с переходной характеристикой среды, последующего наложения реального шумового фона и восстановления ИПХ с анализом ошибок. Для моделирования вибросейсмических данных были построены 1D и 2D модели мерзлоты в районе г. Салехард, использовались сигналы ШПС и ЧМ-свипы. После зашумления реальными сейсмическими фрагментами (ГАУ ЯНАО «Научный центр изучения Арктики») выполнялась обработка с применением деконволюции и корреляционного анализа с последующей оценкой точности восстановления.

Научные результаты работы:

- 1) Проведено моделирование большого набора данных, отражающих поведение полезного сигнала в геоэлектрических условиях, типичных для зоны Арктического шельфа России (море Лаптевых).
- 2) Проанализированы записи электромагнитного зондирования, полученные в море Лаптевых в рамках рейса АМК-82; выделены кривые становления поля и временные ряды шума, характерные для условий съемки с буксируемой диполь-дипольной системой наблюдения.
- 3) Получены оценки помехоподавления для морских систем импульсной электроразведки в условиях влияния характерных шумов с использованием стандартного метода накопления и режима с управляющими сигналами в виде псевдослучайных последовательностей импульсов тока с различной длительностью кодового элемента и формой несущей.

- 4) C использованием записей экспериментально-зарегистрированного сейсмического шума, типичного для условий городской застройки арктических регионов России (г. Салехард), проведено модельное исследование эффективности применения шумоподобных свип-сигналов в вибрационной сейсморазведки системах при решении инженерногеологических задач. Показано улучшение соотношения сигнал/шум и повышение точности выделения границ геологических формаций.
- 5) Разработаны программные инструменты для обработки данных вибрационной сейсморазведки, включая алгоритмы деконволюции и корреляционной обработки сигналов. Реализованные методы позволяют значительно повысить точность получаемых сейсмических изображений даже при наличии высокого уровня сейсмического шума.

Научная новизна работы. В рамках работы впервые совместно проанализированы типичный полезный сигнал, а также характеристики электромагнитных и сейсмических шумов, соответствующих условиям шельфа Арктики и районам городской застройки на территориях с нестабильной мерзлотой, соответственно.

С использованием вышеупомянутых характеристик впервые получены оценки помехоподавления в режиме зондирования становлением поля с использованием морской буксируемой диполь-дипольной установки и псевдослучайных (шумоподобных) последовательностей импульсов тока в геоэлектрических условиях Арктического шельфа, включая типичные кривые полезного сигнала и ряды шума.

Кроме того, впервые исследована возможность использования шумоподобных свип-сигналов в качестве управляющих сигналов для вибрационной сейсморазведки при решении инженерно-геологических задач в условиях городской застройки арктических территорий России, с учетом типичных характеристик полезного сигнала и шума.

Практическая значимость результатов и реализация работы. Практическая значимость определяется вкладом настоящего исследования в повышение эффективности существующих геофизических методов картирования многолетнемерзлых пород на арктических территориях РФ.

Применение шумоподобных свип-сигналов различного типа в морских буксируемых установках ЭМ-зондирования позволит значительно улучшить качество получаемых данных, что, в свою очередь, повысит глубинность и разрешающую способность метода и позволит получать более точные геоэлектрические модели в задачах картирования подводной мерзлоты и разведки месторождений полезных ископаемых в условиях шельфа.

Аналогичный вклад ожидается в связи с применением шумоподобных свипсигналов в системах вибрационной сейсморазведки, где они потенциально могут обеспечить улучшенное подавление нерегулярных волн-помех как в инженерногеологических приложениях (выявление зон простаивания многолетнемерзлых пород под зданиями и сооружениями в на арктических территориях), так и в задачах поиска/мониторинга нефтегазовых месторождений.

Достоверность научных положений, изложенных в диссертации, подтверждается результатами, полученными с применением стандартных алгоритмов математического моделирования и анализа экспериментальных данных.

Апробация результатов. Основные положения доложены на всероссийских конференциях (5), а также на (2) научных семинарах:

- 1) Конференция "Геоевразия-2025", (г. Москва, 2025).
- 2) 67-я Всероссийская научная конференция МФТИ (г. Долгопрудный 2025).
- Заседание семинара «Геолого-геофизический мониторинг литосферы Тянь-Шаня», проводимого Научной станцией РАН в г. Бишкеке совместно с Институтом физики Земли им. О.Ю. Шмидта (г. Бишкек, 2025)
- 4) 65-я Всероссийская научная конференция МФТИ (г. Долгопрудный 2023).
- 5) 64-я Всероссийская научная конференция МФТИ (г. Долгопрудный 2021).
- 6) VIII Всероссийская школа-семинар по электромагнитным зондированиям Земли (г. Москва 2021).
- 7) Современные исследования трансформации криосферы и вопросы геотехнической безопасности сооружений в Арктике (г. Салехард 2021).

Публикации по теме диссертации. Соискателем опубликовано 3 научных статей, включая 2 статьи в журналах, индексируемых в WoS и Scopus, а также 3 статьи в журналах, рекомендованных ВАК.

Личный вклад. Автор выполнил моделирование синтетического полезного сигнала, имитирующего данные морской буксируемой электроразведочной установки типа диполь-диполь, а также данные вибрационной сейсморазведки и (с использованием собственных алгоритмов и программного кода) провел корреляционную обработку и деконволюцию зашумленных наборов данных для оценки эффективности помехоподавления. Автор также принимал активное участие в обработке данных зондирования становлением поля, полученных в ходе морской экспедиции, проведенной в 2020 г. института океанологии им. П.П. Ширшова РАН И непосредственно участвовал в полевых инженерногеологических исследованиях в г. Салехард (Ямало-Ненецкий автономный округ) совместно с сотрудниками из ГАУ ЯНАО «Научный центр изучения Арктики». возможностей Полученные данные использовались автором ДЛЯ оценки предлагаемого подхода.

Структура работы. Диссертация состоит из введения, 4 глав, заключения, списка литературы из 46 наименований, изложена на 132 страницах машинописного текста, содержит 62 рисунка и 6 таблиц.

Благодарности:

Автор выражает искреннюю благодарность своему научному руководителю, к.ф.-м.н. Д.А. Алексееву, за неоценимую помощь, постоянную поддержку, конструктивные советы и чуткое отношение на всех этапах выполнения данной работы. Особая признательность выражается Федеральному государственному автономному образовательному учреждению высшего образования «Московский физико-технический институт (национальный исследовательский университет)» за предоставленную возможность проведения исследования и ценный опыт научной работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении диссертации представлена актуальность проблемы, сформулированы цели и задачи работы, показана научная новизна, отражена практическая значимость результатов работы.

Глава 1. Сверточная модель отклика и сигналы источника в методах импульсной электроразведки и вибрационной сейсморазведки

Параграф 1.1 Основные сведения о морской технологии зондирования становлением поля с буксируемой диполь-дипольной установкой

Рассмотрены основные принципы импульсной электроразведки – метода зондирования становлением поля в ближней зоне (ЗСБ) [Nabighian and Macnae, 1991; Светов, 2008; Кауфман и др., 2016] с учетом особенностей морской буксируемой диполь-дипольной измерительной установки [Krylov et al., 2023], предполагающей возбуждение поля токовой линией, перемещаемой вблизи поверхности воды и регистрацию соосной компоненты электрического поля, имеющей (при возбуждении среды достаточно длинными импульсами тока) на поздних временах становления асимптотику $t^{-\frac{3}{2}}$. Описаны особенности измеряемых откликов (кривых становления поля) в зависимости от длительности импульса и представлены примеры характерных кривых.

Параграф 1.2 Виды переходных характеристик в импульсной электроразведке.

Раздел посвящён теоретическим аспектам формирования отклика среды в импульсной электроразведке на основе уравнений Максвелла. Среда рассматривается как линейная система, преобразующая входной сигнал (силу тока в источнике I(t)) в отклик s(t) через свёртку с импульсной переходной характеристикой (ИПХ) h(t), зависящей от геоэлектрической структуры изучаемой среды и конфигурации системы наблюдения.

$$s(t) = \int_{-\infty}^{+\infty} h(t-\tau) \cdot I(\tau) d\tau.$$
(1)

В морских условиях применяется гальваническое возбуждение с регистрацией соосной компоненты электрического поля. Кратко рассмотрено поведение поля в этом случае и обсуждаются различия между переходной ΠХ полубесконечную характеристикой (откликом на ступень включения/выключения тока в источнике) и ИПХ (откликом на бесконечно-узкий импульс) и их значение для интерпретации, а также обсуждаются методы повышения точности за счёт накопления сигналов и оптимизации параметров импульсов.

Параграф 1.3 Основные сведения о вибрационной сейсморазведке.

В отличие от методов с импульсным возбуждением поля упругих колебаний, вибрационная сейсморазведка использует продолжительные,

управляемые по форме колебания с малой амплитудой, в частности, частотномодулированные (ЧМ) СВИП-сигналы, длительность которых существенно превышает время прихода отражённых волн. Наблюденный сигнал (вибротрасса/сейсмотрасса) описывается сверточным соотношением:

$$S(t) = \int_0^\infty h(\theta) \cdot M(t - \theta) d\theta, \qquad (2)$$

где M(t)— управляющий сигнал (сигнал источника), а h(θ) — отклик среды. Вибросейсмические сигналы обладают широкой полосой частот, длительностью и нестабильной амплитудно-фазовой структурой, что приводит к наложению и интерференции волн, в результате чего формируется слабо разрешённое поле [Vedanti et al., 2020], где визуально невозможно выделить регулярные отражённые и преломлённые пакеты или определить времена их вступлений.

Параграф 1.4 Принципы корреляционной обработки вибросейсмических данных.

Основной метод обработки виброграмм состоит в вычислении взаимной корреляционной функции (ВКФ) между сигналом принятой сейсмотрассой S(t) и управляющим сигналом M(t), где пики ВКФ соответствуют временам прихода отражённых волн [Вибрационная..., 1990]. В рамках свёрточной модели ВКФ представляет собой свёртку импульсной характеристики среды с автокорреляцией управляющего сигнала, что позволяет локализовать отражения. Метод широко используется из-за устойчивости К шуму И низкой вычислительной сложности.

Глава 2. Сверточная модель отклика и сигналы источника в методах импульсной элекроразведки и вибрационной сейсморазведки

Параграф 2.1 Основные сведения об использовании псевдослучайных сигналов в геофизических измерительных системах

Ряд исследователей [Светов и др., 2012; Svetov et al., 2012; Ильичев, Бобровский, 2014; Великин и Великин, 2016] предложили использовать в системах активной геофизики псевдослучайные последовательности коротких импульсов — шумоподобные сигналы (ШПС, или ПСП, ПСКП), обладающие широким спектром и статистическими свойствами, близкими к белому Гауссовскому шуму, что делает их эффективным возбуждающим воздействием для систем «среда–установка». Наиболее распространёнными являются М-последовательности (MLS), генерируемые линейными сдвиговыми регистрами с обратной связью в полях Галуа [Zepernick, Finger, 2005]. Каждый следующий элемент последовательности формируется как взвешенная сумма предыдущих регистровых значений по модулю b (основания алфавита, например, b=2):

$$m(n+1) = \left(\sum_{i=1}^{n} w_i r_i\right) \mod b \tag{3}$$

где $w_i \in \{0,1\}$ — веса обратной связи, r_i , — содержимое регистра. В линейной свёрточной модели отклик среды на такие сигналы описывается как свёртка ШПС m(t) с её импульсной переходной характеристикой h(t):

$$s(t) = m(t) * h(t),$$
 (4)

где знак * обозначает свертку. На рис. 2.1 показаны примеры ШПС.

Рисунок 2.1 – Слева: пример сигнала источника с длительностью элементарного импульса (кодового элемента) 8 мс; справа: соответствующий ШПС-отклик.

Параграф 2.2 Подходы к оценке переходной характеристики (отклика) среды

Цель обработки сигналов, возбуждённых псевдослучайной последовательностью, — восстановление импульсной переходной характеристики среды h(t). Простейший подход — использование взаимной корреляционной функции $B_{\rm ms}(t)$ (ВКФ), которая при АКФ $A_{\rm mm}(t)$, близкой к б-функции, достаточно хорошо аппроксимирует отклик среды [Ипатов, 1992]:

 $B_{\rm ms}(t) = A_{\rm mm}(t) * h(t),$ (5)

Однако на практике АКФ содержит флуктуации, снижающие точность оценки h(t), и во многих случаях более надежные результаты показывает деконволюция, т.е, решение интегрального уравнения (2), которое может осуществляться как в частотной, так и во временной области, в том числе, методом наименьших квадратов [Светов и др., 2012]. Для повышения устойчивости решения может использоваться регуляризация Тихонова [Li, 2023] с подбором параметра регуляризации с помощью кросс-валидации [Gu, 2008].

Параграф 2.3 Принципы использования псевдослучайных кодовых последовательностей в качестве управляющего сигнала в системах вибрационной сейсморазведки

В вибрационной сейсморазведке шумоподобные сигналы (ШПС) на основе М-последовательностей представляют собой эффективную альтернативу ЛЧМсвипам, обеспечивая узкую и симметричную автокорреляционную функцию, высокую устойчивость к помехам и хорошую ортогональность, что особенно важно в тонкослоистых средах и при одновременной работе нескольких источников [Wischmeyer, 1966; Crook et al., 1966; Dean, 2014; Жуков и др., 2017; асан и Кострыгин, 2018]. Моделирование и эксперименты подтвердили, что ШПС, особенно с троичными кодами и оптимальными параметрами, обеспечивают качество отражений не хуже, а нередко и лучше, чем ЛЧМ, снижая при этом сейсмическое воздействие благодаря равномерному распределению энергии [Sun et al., 2009; She, 2011; Scholtz, 2012; 2013].

Глава 3. Анализ эффективности применения псевдослучайных (шумоподобных) сигналов в морской буксируемой диполь-дипольной системе зондирования становлением поля

Параграф 3.1 Проблема помехоподавления при регистрации данных ЗСБ с использованием морской буксируемой диполь-дипольной установки

Опыт геоэлектрических исследований, проводимых в шельфовых зонах морей Российской Арктики с дипольной осевой буксируемой установкой [Кошурников и др., 2016; Shakhova et al., 2017], реализующей гальваническое возбуждение и прием сигнала, указывает на существенное искажение кривых становления поля в режиме накопления с однополярными импульсами вследствие влияния низкочастотных шумов. Эти шумы, по-видимому, связаны с электрокинетическими и/или электрохимическими явлениями, возникающими при движении приемной линии в водной толще [Егоров и Пальшин, 2015], и имеют относительно низкочастотный спектральный состав, оказывая значимое влияние на регистрируемый сигнал в диапазоне времен свыше 70-80 мс (рис. 3.1а,б) [Гончаров и др., 2022]. Наличие шумов приводит к существенному искажению формы кривых становления поля, выражающемуся в нереалистично медленном, либо, наоборот, быстром убывании, нарушении монотонности, выходе в область отрицательных значений. Характерная амплитуда шума составляет 2-5 мВ, при этом часто можно говорить о наличии квазипостоянной составляющей, приводящей к сдвигу сигнала по амплитуде на несколько мВ.

При представлении в двойном логарифмическом масштабе (рис. 3.16) искажение кривых становления поля выражается либо в их резком изгибе на поздних временах в сторону более низких значений с последующим переходом в область, либо, наоборот, отрицательную завышении значений ΠХ И выполаживании ветвей, В зависимости ОТ превалирующего значения квазипостоянной составляющей шумового сигнала в массиве индивидуальных кривых, по которому проводится накопление. В большинстве случаев искаженная часть отклика наблюдается начиная с времени становления, не превышающем 100 мс, что резко сокращает интерпретируемую часть ПХ, поскольку ее начальный сегмент отвечает условиям дальней зоны вследствие значительного

разноса и высокой проводимости верхнего слоя геоэлектрического разреза (соленой воды с удельным сопротивлением 0.3–0.7 Ом*м).

Рисунок 3.1 – Примеры данных ЗСБ, полученных в ходе экспедиции НИС «Академик Мстислав Келдыш», 2020 г. (море Лаптевых). (а) 25-секундный интервал записи; (б) серия кривых становления поля, белый пунктир — синтетическая кривая для обобщённой геоэлектрической модели района.

Традиционные методы шумоподавления основаны на накоплении и усреднении, однако в морских условиях их эффективность ограничена ввиду непрерывного перемещения судна и присутствия систематических помех, не компенсируемых усреднением. Проведенные ранее численные эксперименты с ШПС Гауссовским зашумлением шумом с показали, что применение псевдослучайных последовательностей $(\Pi C \Pi)$ импульсов тока позволяет существенно повысить качество восстановления ПХ в [Светов и др., 2012; Гончаров, 2021], что обосновывает необходимость дальнейшего исследования эффективности ШПС применительно к морской буксируемой установке ЗСБ и характеристикам шума, типичного для зондирований на Арктическом шельфе.

Параграф 3.2 Анализ характерных шумов и полезного сигнала в условиях морского зондирования становлением поля на основе экспериментальных данных

На основе записей электрического поля, полученных в рамках рейса НИС «Академик Мстислав Келдыш» (АМК-82, 2022) в море Лаптевых [Krylov et al., 2023; Кошурников и др., 2024] была сформирована библиотека шумов и получены усреднённые кривые ПХ/ИПХ, используемые в дальнейшем для оценки эффективности ШПС.

Рисунок 3.2 – Характеристики сигнала-помехи по экспериментальным данным [Кошурников и др., 2024]: (а–в) — фрагменты шума различной длительности; (г) — амплитудные спектры нескольких реализаций шума; (д) — спектрограмма.

Проведенный анализ экспериментально-зарегистрированного шума обосновывает первое защищаемое положение: Основные помехи, вносящие искажения в записи зондирования становлением поля, регистрируемые с использованием буксируемой диполь-дипольной электроразведочной установки в условиях шельфа моря Лаптевых, имеют частотный диапазон от сотых долей до первых единиц Гц.

Параграф 3.3 Сравнительный анализ эффективности помехоподавления в режимах накопления и ШПС в условиях морского зондирования становлением поля

С целью оценки эффективности режима ШПС в условиях влияния характерных шумов и ее сравнения с эффективностью накопления было проведено моделирование ШПС-рядов, имитировавших сигналы зондирования с

импульсами различной длительности. На основе экспериментальных данных и "истинная" ИПХ, была построена алгоритма экстраполяции кривая сворачиваемая с ШПС-сигналами источника для моделирования принятых сигналов. По построенным сигналам с добавлением реального шума была выполнена реконструкция ИПХ, а также получена количественная оценка её истинных значений Гончаров погрешности относительно 2022]. И дp., 212 2^{15}) бинарные М-последовательности (длины И Использовались с элементарными импульсами длиной 16 и 2 мс соответственно, при общей длительности сигнала ~65 с (рис. 3.3 (a)). В режиме накопления моделировались серии из 2-секундных импульсов с 2-секундными паузами (2)c/2 c). Имитированные сигналы зашумлялись аддитивным шумом, выделенным из экспериментальных данных. Восстановление кривой становления (ИПХ среды) выполнялось с помощью деконволюции (решения уравнения свёртки) (рис. 3.3 (б)). Установлено, что ШПС с 16-мс импульсами обеспечивают приемлемую точность до 150-200 мс, а ШПС с импульсами 2 мс – до 90 мс, при этом в режиме накопления искажения наблюдаются, начиная с 30-40 мс (рис. 3.3 (б)).

Рисунок 3.3 – а) Имитированные фрагменты принятых сигналов для различных режимов зондирования. Чёрным показан аддитивный шум, усиленный для наглядности в 50 раз; б) Результаты восстановления (деконволюции) переходных характеристик по соответствующим сигналам; в) Сравнение

восстановленных кривых в режимах накопления (2 с/2 с) и ШПС (2 мс, 16 мс) при одинаковой длительности зондирования (65 с) и добавлением шума (100

реализаций). Толстые линии соответствуют истинным ПХ и ИПХ, а тонкие –

результатам восстановления; г) графики относительных отклонений восстановленных и истинных кривых (красные – накопление с разнополярными импульсами, голубые – ШПС с импульсами 2 мс).

Анализ точности восстановления кривой для 100 различных реализаций накладываемого шума показал, что относительная ошибка 5% в режиме накопления наблюдается уже на 10 мс (однополярные импульсы) и на 50 мс (разнополярные импульсы), тогда как в режиме ШПС с 2-мс импульсами – только на 85 мс, а с 16-мс — на 110–120 мс . Таким образом, режим ШПС обеспечивает существенно более высокую устойчивость к шуму, расширяя интерпретируемый временной диапазон в 2–3 раза по сравнению с накоплением (рис 3.3(в-г)).

Параграф 3.4 Сравнительный анализ эффективности применения периодических сигналов, модулированных псевдослучайным кодом

На следующем этапе был проведен анализ эффективности различных ШПС в условиях существенно ограниченной длительности зондирования (~ 8 с на одном пункте), типичной для измерений в движении со скоростью 7-10 узлов. С этой целью была использована квазидвумерная модель геоэлектрического разреза, отражающая типичную структуру донных осадков шельфа моря Лаптевых, включая многолетнемерзлый слой и характерный профиль батиметрии Кошурников 2024]. Alekseev et al., 2023; И др., С применением модифицированной версии ПО DIPOLE1D [Key, 2009; Krylov et al., 2023], были рассчитаны синтетические ИПХ для нескольких пунктов данной модели, по которым на основе свертки строились имитированные ряды "наблюденных" сигналов.

Формирование управляющих свип-сигналов осуществлялось на основе четырёх бинарных псевдослучайных кодовых последовательностей (ПСКП), содержащих 16383, 8191, 2047 и 1023 элемента соответственно. Каждый элемент определял интервал протекания тока фиксированной амплитуды (±1), при длительности 0.5, 1, 4 и 8 мс (A–D). Генерация ШПС осуществлялась в соответствии с алгоритмом построения М-последовательностей [Светов и др., 2012] и логической схемы, предложенной в [Wischmeyer, 1966]. В результате квазисинусоидальные свип-сигналы, были синтезированы отличающиеся периодом несущей частоты и модулируемые соответствующей ПСКП. Также на основе ПСКП А были дополнительно сгенерированы модификации свипсигналов с несущими, имеющими треугольную и пилообразную форму. В свою очередь, на базе ПСКП С был реализован свип-сигнал с линейно изменяющейся

во времени частотой в диапазоне от 1 до 2500 Гц. В целях сопоставления с классическим режимом накопления в анализ был включён эталонный сигнал в виде разнополярного меандра с паузой, характеризующийся равной длительностью токовых импульсов и промежутков между ними (по 500 мс).

Вариант	Модулирующая	Форма несущей	Период	Число	Длительность	
	IICKII		несущеи	элементов	элемента	
A0 A1		– Гармонинеская	- 500 MKC			
	-	Гармоническая	250 MKC			
A2 A3	А, бинарная,	Гармоническая	200 MKC	16383	500 мгс	
	разнополярная (-1; 1)	Гармоническая 5 мкс		10385	JOO MIKE	
	-	Тармоническая	500 MKC			
T1A1 T2A1		Пипообразион	500 MKC			
12AI PO		Пилоооразная	300 MRC			
DU D1	•		- 500 xrrs			
	D Grupping	Гармоническая	250 MKC			
D2	В, оинарная,	Гармоническая	230 MKC	8191	1 мс	
B3	разнополярная (-1; 1)	Гармоническая	100 мкс			
B4	-	Гармоническая	5 MKC			
<u>B5</u>		1 армоническая	1 MC		4 мс	
<u>C0</u>	-	-	-			
	-	I армоническая	500 мкс			
C2		Гармоническая	250 мкс			
<u>C3</u>	С, бинарная, разнополярная (–1; 1)	Гармоническая	100 мкс			
C4		Гармоническая	5 мкс	2047		
C5		Гармоническая	1 мс			
C6		Гармоническая	2 мс			
LC1		Квазигармоническая с ЛЧМ	400 мкс – 1 с			
D0		_	_			
D1		Гармоническая	500 мкс			
D2		Гармоническая	250 мкс			
D3	D, бинарная,	Гармоническая	100 мкс	1000	0	
D4	разнополярная (-1; 1)	Гармоническая	5 мкс	1023	8 мс	
D5		Гармоническая	1 мс			
D6	1	Гармоническая	2 мс			
D7	1	Гармоническая	4 мс			
S	Разнополярный меандр с паузой	_	_	16	500 мс	

Сводные параметры ШПС представлены в таблице 1.

Таблица 1. Основные параметры ШПС

Для априорной оценки эффективности того или иного ШПС в терминах помехоподавления в спектральной области, может быть использовано соотношение

$$M(f)H(f) = S(f) + N(f)$$
(6)

где M(f), H(f), S(f), N(f) — Фурье-образы соответствующих временных функций: управляющего сигнала m(t), импульсной характеристики среды h(t), полезного сигнала s(t) и шума n(t). В соответствии с (б) оценку частотной характеристики среды в присутствии шумов можно записать как:

$$X(f) = H(f) + \Delta H(f) = \frac{S(f)}{M(f)} + \frac{N(f)}{M(f)},$$
(7)

откуда следует, что точность восстановления H(f) напрямую зависит от отношения спектров сигнала-помехи N(f) и возбуждающего сигнала M(f). При прочих равных условиях, ошибка оценки Δ H(f) будет тем меньше, чем выше амплитуда M(f) в целевом частотном диапазоне. На рис. 3.4(a) приводятся амплитудно-частотные кривые основных рассмотренных ШПС и ряда экспериментально-зарегистрированных реализаций шума, а на рис 3.4(б) – отношения амплитудного спектра одной из реализаций шума к спектрам ШПС, характеризующие погрешность $\frac{N(f)}{M(f)}$.

Рисунок 3.4 – (а) амплитудные спектры основных ШПС-сигналов и отдельных реализаций шума; (б) амплитуды отношения спектров шума и ШПС.

Анализ показал, что наибольшую устойчивость к шумам обеспечивают немодулированные ПСКП с длинными кодовыми элементами, благодаря их равномерному энергетически насыщенному 3.5(a)). И спектру (рис. Модулированные свип-сигналы уступали в точности восстановления из-за спектральных минимумов, особенно при высоком уровне шумов. Режим накопления с меандром также показал низкую эффективность, особенно в диапазоне поздних времен (рис. 3.5(б)). В целом, в условиях рассмотренных шумов, ШПС с увеличенной длительностью кодовых элементов обеспечивают более точное восстановление ИПХ. Сводные оценки среднеквадратичных погрешностей (RMSE) для всех рассмотренных ШПС представлены в таблице 2.

Срип	Кривая для пункта 1		Кривая для пункта 2		Кривая для пункта 3		Кривая для пункта 4	
сигнал	RMSE	RMSE 2, %	RMSE	RMSE 2, %	RMSE 1,	RMSE 2,	RMSE 1,	RMSE 2,
Chinada	1, %		1, %		%	%	%	%
A0	24	71	23	68	6	22	8	12
A1	124	623	17	76	18	91	22	109
A2	33	125	32	119	4	50	7	43

							-	
A3	33	118	34	123	4	53	6	34
A4	36	129	34	124	4	54	6	32
T1A1	179	885	22	85	25	137	33	142
T2A1	123	619	13	65	18	90	21	106
B0	10	9	9	6	9	6	7	13
B1	15	67	184	928	30	157	25	132
B2	45	394	873	4247	165	678	136	523
B3	36	286	620	3016	121	508	101	404
B4	40	331	731	3546	142	589	116	460
B5	15	58	169	863	26	145	21	120
C0	3	6	3	3	2	1	2	2
C1	4	10	3	5	2	4	2	3
C2	2	4	3	5	2	4	2	3
C3	4	9	3	5	2	4	2	2
C4	4	9	3	4	2	4	2	2
C5	4	10	3	5	2	4	2	3
C6	6	34	4	23	2	6	3	15
LC1	11	52	11	53	2	6	6	30
D0	3	4	1	5	3	4	3	5
D1	4	7	1	14	3	5	4	9
D2	4	7	1	14	3	5	4	9
D3	4	6	1	13	3	5	4	8
D4	3	6	1	13	3	5	4	8
D5	3	6	1	13	3	6	4	9
D6	10	58	11	47	6	15	4	16
D7	47	253	45	202	17	58	13	68
S	7	37	58	290	7	35	24	121

Таблица 2 – Значения среднеквадратичных погрешностей (RMSE) кривых

после деконволюции при различном уровне зашумления полезного сигнала.

Рисунок 3.5 а) Амплитудные спектры основных рассмотренных ШПС; б)

Результаты деконволюции данных с гармонической несущей (100 мкс), модулированной бинарной последовательностью с импульсами 8 мс: серый —

истинная кривая, красный — при 2-кратном, синий — при 10-кратном зашумлении; в) Результаты накопления для разнополярного меандра с паузой.

Параграф 3.5 Основные выводы

Имеющиеся экспериментальные данные показывают, что низкочастотный шум существенно искажает кривые становления поля, а стандартные методы шумоподавления недостаточны. Проведенный анализ продемонстрировал зависимость эффективности сигналов от длительности кодового элемента, при этом базовые ПСКП превосходят модулированные аналоги. Наиболее высокую помехоустойчивость продемонстрировали управляющие сигналы в виде базовых ПСКП с различной длительностью импульсов. В то время как модулированные ПСКП (с гармонической, треугольной или пилообразной огибающей) не обеспечили ожидаемого улучшения и уступили базовым по устойчивость и качеству восстановления. В целом, ШПС показали высокую устойчивость к шуму и перспективность для морской импульсной электроразведки.

Представленные в главе результаты доказывают второе защищаемое положение: псевдослучайных (шумоподобных) Использование последовательностей импульсов тока морской буксируемой в системе малоглубинной импульсной электроразведки позволяет существенно улучшить помехоподавление и расширить неискаженный шумами диапазон переходной характеристики no сравнению С традиционно-используемым режимом накопления. Кроме того, анализ отношений спектральных характеристик ШПС и шума позволяет установить априорно оптимальный тип применяемого ШПС, что подтверждает четвертое защищаемое положение: •выбор конкретного вида псевдослучайного сигнала источника целесообразно осуществлять, исходя из минимизации отношения спектров шума и сигнала источника в целевом диапазоне частот на основе предварительного анализа свойств шума в районе работ.

Глава 4. Анализ эффективности применения псевдослучайных (шумоподобных) сигналов в системах вибрационной сейсморазведки

Рассматривается возможность повышения разрешающей способности сейсморазведки за счёт использования широкополосных псевдослучайных свипсигналов путем анализа качества восстановления сейсмических трасс и сейсмограмм по набору синтетических виброграмм, смоделированных для псевдослучайных (ШПС) и частотно-модулированных (ЧМ) квазигармонических свип-сигналов в рамках 1D и 2D подходов. С помощью корреляционной обработки, а также деконволюции зашумленных синтетических виброграмм и их сопоставления с сейсмограммами в режиме одиночного импульса, продемонстрированы преимущества применения ШПС для получения детальных сейсмических изображений с выделением основных отражающих границ.

Параграф 4.1 Моделирование синтетических импульсных переходных характеристик (1D)

Для моделирования синтетических виброграмм использовалась импульсная переходная характеристика, рассчитанная для горизонтально-слоистой среды как сумма дельта-импульсов, соответствующих временам пробега сейсмической волны до границ отражения и обратно. Расчёт времён производился по годографу с учётом эффективной скорости и глубины, а амплитуды отражений — по коэффициентам акустического импеданса слоёв с учётом затухания. В качестве модели среды использовалась восьмислойная структура с заданными скоростями, плотностями и мощностями, на основе которой была получена эталонная импульсная характеристика (рис. 4.1).

Рисунок 4.1 – Синтетические данные для моделирования сейсмограмм и восстановления ИПХ при различных режимах вибрационного зондирования: (а) многослойная геологическая модель; (б) профиль акустической жёсткости; (в) ИПХ системы "среда–установка" при нулевом расстоянии между источником и приёмником.

Параграф 4.2 Анализ помехоподавления в рамках 1D моделирования вибросейсмических данных при зашумлении синтетическим Гауссовским шумом

В рамках моделирования вибрационного зондирования были построены синтетические виброграммы на основе свёртки импульсной переходной характеристики (ИПХ) с различными управляющими сигналами: ЧМ-свипом и ПСП с длиной импульса 3, 12 и 48 мс, сглаженными окном Хэмминга. Все

сигналы подвергались зашумлению (SNR = -2 дБ), после чего применялись взаимная корреляция и деконволюция (рис 4.2). Результаты показали, что ПСП с длиной 3–12 мс обеспечивают лучшее восстановление отражающих границ и подавление осцилляций по сравнению с ЧМ-свипом и длинными ПСП. Сигналы с длительностью 48 мс оказались менее эффективны из-за снижения разрешения и повышенного влияния шума.

Рисунок 4.2 – Фрагменты сигналов, полученных при моделировании вибрационного зондирования с различными управляющими воздействиями: (a) — импульсная переходная характеристика системы «среда–установка» при x = 0 м; (б) — свип-сигнал с экспоненциальной модуляцией (10–100 Гц), без шума (чёрная) и при SNR = –2 дБ (серая); (в–д) — сигналы на основе сглаженных ПСП с длительностями 3, 12 и 48 мс (синяя, зелёная, красная кривые — без шума; бледные — с шумом, SNR = –2 дБ); На нижней панели: сейсмотрассы после корреляционной обработки — (а) эталонная ПХ, (б)–(д) — ВКФ для соответствующих сигналов; все кривые сглажены окном Хэмминга.

Деконволюция с регуляризацией Тихонова показала высокую устойчивость и точность восстановления временных характеристик среды, особенно при использовании коротких ПСП, обладающих широким и равномерным спектром. Хотя метод корреляции уступает по спектральной полноте, он демонстрирует хорошее качество восстановления при меньших вычислительных затратах. В целом, ПСП-сигналы с короткими импульсами подтвердили свою эффективность для вибрационной сейсморазведки в шумных условиях, обеспечивая надёжную интерпретацию отражённых границ и устойчивость к помехам.

Параграф 4.3 Анализ помехоподавления в рамках 1D моделирования вибросейсмических данных при зашумлении нескоррелированным сейсмическим сигналом

В численном эксперименте сравнивались три типа возбуждающих сигналов — одиночные импульсы, ЧМ-свипы и сигналы на основе псевдослучайных последовательностей (ШПС) — при 3 различных уровнях зашумления (рис 4.3).

Рисунок 4.3 – Верхняя панель: фрагменты ЛЧМ- и ШПС-сигналов, использованных при моделировании сейсмических волн. Средняя панель: синтетические сейсмограммы ОГТ для ЛЧМ- и ШПС-сигналов с добавленным аддитивным шумом (SNR = –4 дБ; чёрные, синие — без шума; красные — аддитивный шум). Нижняя панель: результаты деконволюции соответствующих сейсмограмм для ЛЧМ- и ШПС-сигналов.

Моделируемая сейсмограмма ОГТ содержала 23 трассы, с добавлением реального шумового фона из базы Геологической службы США. При слабом ШПС-сигналы уже превосходили другие шуме режимы ПО качеству восстановления импульсной переходной характеристики (ИПХ), а при среднем и высоком уровнях шума сохраняли проявленность поздних отражений в отличие от ЛЧМ. Таким образом, сигналы на основе ПСП показали высокую устойчивость к шумам и значительное преимущество в качестве восстановления ИПХ, особенно при использовании деконволюции, обеспечивая до 10-кратного выигрыша в помехозащищённости (рис 4.3). При этом сглаживание фронтов или изменение длительности импульса слабо влияет на точность, а корреляционная обработка для ШПС также даёт лучшие результаты по сравнению с ЧМ-свипами. Эти свойства делают ШПС эффективным решением для вибросейсморазведки в шумных прибрежных и морских условиях.

Параграф 4.4 Анализ эффективности применения псевдослучайных свип-сигналов на основе 2D моделирования вибросейсмических данных на примере модели мерзлых грунтов для района г. Салехард

В рамках двумерного численного моделирования, приближённого к исследована эффективность условиям района г. Салехард, различных вибрационной сейсморазведке. Моделирование управляющих сигналов в проводилось для стратифицированной среды с зоной промораживания, таликом и использованием многолетнемёрзлыми породами, с библиотеки Devito. Сравнивались три типа сигналов: импульс Рикера, классический ЧМ-свип и ПСП-свип на основе сглаженной М-последовательности (12 мс). Результаты показали, что ПСП-сигналы обеспечивают более чёткое восстановление отражений при высоком уровне шумов (SNR до -10 дБ), особенно по сравнению с ЧМ-свипом (рис 4.4). Количественно они повышают отношение сигнал/шум в 1,9-2,8 раза, что делает их эффективным решением для сейсморазведки в шумных и сложных геологических условиях.

Параграф 4.5 Основные выводы

Глава посвящена моделированию вибрационной сейсморазведки с использованием псевдослучайных последовательностей (ПСП) в качестве управляющих сигналов. Одномерное моделирование показало, что ПСП, сглаженные окном Хэмминга, лучше подавляют шум по сравнению с ЧМ-СВИП, особенно при длине импульса 3–12 мс. Деконволюция с регуляризацией Тихонова не дала существенного прироста точности по сравнению с корреляцией и требует больше вычислительных ресурсов. Двумерное моделирование для района г. Салехард подтвердило, что ПСП увеличивают отношение сигнал/шум в 1,2–2,8 раза и обеспечивают чёткое выделение отражений даже при высоком уровне шумов, что особенно важно в городской среде. ПСП показали высокую помехоустойчивость и хорошее временное разрешение, делая их перспективными для инженерных задач в Арктике и городских условиях.

Рисунок 4.4 – Сравнение результатов использования различных управляющих сигналов (импульс Рикера, ШПС-свип с длительностью импульса 12 мс, ЧМ-свип) в системе вибрационной сейсморазведки малой глубинности: а) сейсмические изображения для трёх рассмотренных управляющих сигналов при отношении сигнал/шум -4 дБ; б) то же при отношении сигнал/шум -10 дБ; в)

Примеры нормированных сейсмотрасс для одного из каналов.

образом, материалы главы ложатся в основу Таким третьего защищаемого положения: Использование свип-сигналов, основанных на шумоподобных последовательностях импульсов механической нагрузки в системах вибрационной сейсморазведки позволяет улучшить подавление волн-помех повысить детальность нескоррелированных u получаемых сейсмограмм по сравнению с традиционно-используемыми свип-сигналами с линейной частотной модуляцией

ЗАКЛЮЧЕНИЕ

В ходе решения поставленных в работе задач выполнена теоретическая оценка эффективности использования псевдослучайных (шумоподобных) сигналов источника применительно к морской системе импульсной электроразведки и вибрационной сейсморазведки; разработаны алгоритмы и программный код для обработки соответствующих данных. Основные выводы и результаты диссертации состоят в следующем:

- 1. Проведено моделирование большого набора данных, отражающих поведение полезного сигнала в геоэлектрических условиях, типичных для зоны Арктического шельфа России (море Лаптевых).
- 2. Проанализированы записи электромагнитного зондирования, полученные в море Лаптевых в рамках рейса АМК-82; выделены кривые становления поля и временные ряды шума, характерные для условий съемки с буксируемой диполь-дипольной системой наблюдения.
- 3. Установлено, что основные помехи, вносящие искажения в записи зондирования становлением поля, регистрируемые с использованием буксируемой диполь-дипольной электроразведочной установки в условиях шельфа моря Лаптевых, имеют частотный диапазон от сотых долей до первых единиц Гц.
- 4. Получены оценки помехоподавления для морских систем импульсной электроразведки в условиях влияния характерных шумов с использованием стандартного метода накопления и режима с управляющими сигналами в виде псевдослучайных последовательностей импульсов тока с различной длительностью кодового элемента и формой несущей.
- 5. Показано, что использование псевдослучайных (шумоподобных) последовательностей импульсов тока в морской буксируемой системе малоглубинной импульсной электроразведки позволяет существенно улучшить помехоподавление и расширить неискаженный шумами диапазон переходной характеристики приблизительно в 1,5 раза по сравнению с традиционно-используемым режимом накопления.
- 6. В рамках численного моделирования полезного сигнала (виброграмм) и его зашумления экспериментально-зарегистрированным шумом, типичным для условий г. Салехард (ЯНАО), установлено, что использование свипсигналов, основанных на шумоподобных последовательностях импульсов механической нагрузки системах вибрационной сейсморазведки В улучшить подавление нескоррелированных волн-помех позволяет И сравнению детальность получаемых сейсмограмм повысить ПО с традиционно-используемыми свип-сигналами с линейной частотной модуляцией. Средний прирост уровня помехоподавления на рассмотренном

наборе данных составил порядка 1.9 раза, что подтверждает эффективность предложенного подхода.

7. Разработаны и протестированы алгоритмы обработки данных для нового режима возбуждения геофизических систем. В рамках работы созданы программные инструменты ДЛЯ деконволюции И корреляционной обработки сигналов, полученных в режиме псевдослучайного возбуждения. позволили восстановить Эти инструменты кривые кажущегося сопротивления и сейсмограммы из зашумленных сигналов с высокой точностью, что подтвердило работоспособность предложенных методов на моделированных и полевых данных.

Таким образом, в рамках модельного анализа, выполненного на примере конкретных типов полезного сигнала и шума, относящихся к условиям Арктических регионов, показаны потенциальные преимущества применения шумоподобных сигналов источника в соответствующих геофизических системах. Такой анализ впервые проведен с единых позиций применительно к импульсной электроразведке и вибрационной сейсморазведке. Полученные результаты свидетельствуют о том, что предложенные подходы могут быть эффективно применены для решения актуальных прикладных задач: более точного обнаружения зон эмиссии метана в донных отложениях мелководных акваторий Арктического шельфа, а также картирования состояния многолетнемерзлых пород под зданиями и сооружениями в северных городах.

Достигнутые научные результаты и полученные выводы соответствуют поставленной цели и обладают научно-практической значимостью для дальнейшего развития систем электромагнитной и сейсмической геофизики. Практическая реализация этих методов позволит повысить надежность интерпретации геофизических данных в указанных условиях, что может, в том числе, влиять на оценку природных и техногенных георисков.

В рамках дальнейшей работы планируется реализовать режим токового сигнала в форме ШПС в комплексе морской электроразведки компании "МГУ-Геофизика" на базе генератора тока "ТЭЛЛС-ЗЭ" производства ООО «Геосигнал» с модулем дополнительной коммутации. Для обработки сигналов, получаемых с данной генераторной системой, будут использоваться алгоритмы и программное обеспечение, разработанные автором в рамках работы над диссертацией.

СПИСОК ПУБЛИКАЦИЙ

основных результатов диссертации в рецензируемых научных изданиях, индексируемых в базе данных Web of Science, Scopus, RSCI и статьи в периодических изданиях, рекомендованных ВАК

1) Гончаров А.А., Алексеев Д.А., Кошурников А.В, Гунар А.Ю, Семилетов И. П., Пушкарев П.Ю. Применение псевдослучайных кодовых последовательностей для повышения эффективности зондирования становлением поля в ближней зоне на Арктическом шельфе // Физика Земли, 2022, №5, с. 158–170.

2) Алексеев Д.А, Кудинов Д.С., Потылицын В.С., Гончаров А.А. Модельный анализ эффективности псевдослучайных кодовых последовательностей для возбуждения поля упругих колебаний в системах вибрационной сейсморазведки // Вестник Российской Академии Естественных Наук, 2023, Т. 23, № 4, с.139-151, DOI: 10.52531/1682-1696-2023-23-4-139-151.

3) Алексеев Д.А., Кошурников А.В., Пушкарев П.Ю., Балихин Е.И., Гунар А.Ю., Гончаров А.А. Оценка возможностей применения свип-сигналов в морской буксируемой системе импульсной электроразведки на основе математического моделирования // Сейсмические приборы. 2024, Т. 60, № 4, с. 44-61. DOI 10.21455/si2024.4-3